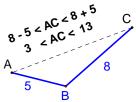

Geometry SOL Practice Topic #7: Triangle Inequalities Notes

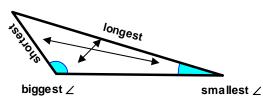
I. Given 3 segment lengths, will they make a triangle?



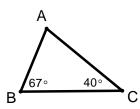
Generalization Example Example

Given: short side, middle side, long side	Given:	Given:
	side $1 = 8$ inches	side $1 = 16$ inches
If $\underline{\text{short side}} + \underline{\text{middle side}} > \underline{\text{long side}}$	side $2 = 10$ inches	side $2 = 5$ inches
then YES a triangle can be form. Otherwise, NO .	side $3 = 7$ inches	side $3 = 9$ inches
	Is $8 + 7 > 10$?	Is $5 + 9 > 16$?
	Is $15 > 10 ? \rightarrow YES$	Is $14 > 16 ? \rightarrow NO$

II. Given 2 sides of a triangle, what is the range of the third side?


Generalization Example

Generalization	Example
Given: side 1 and side 2	Given:
side $1 -$ side 2 $ $ < side 3 < side $1 +$ side 2	side $1 = 11$ inches
or	side $2 = 15$ inches
subtract the sides < side 3 < add the sides	15 − 11 < side 3 < 15 +11
	4 < side 3 < 26
	[Side 3 is between 4 and 26 inches.]


III. Given the sides of a triangle, list the angles in order of size. Given the angles of a triangle, list the sides in order of size.

Generalization Example

The smallest angle is opposite the shortest side. The largest angle is opposite the longest side.

Given: $m\angle B = 67^{\circ}$ and $m\angle C = 40^{\circ}$ List the sides in order from shortest to longest. [note: $m\angle A = 180^{\circ} - 67^{\circ} - 40^{\circ} = 73^{\circ}$]

solution: AB < AC < BC