Exploring Translations

1. New Sketch: To open a new sketch go to FILE and click on New Sketch

2. Create a triangle.
a. Using the SEGMENT tool, construct a triangle.
b. Drag the cursor and release for each segment.

3. Label the triangle $A B C$.
a. Click on the LABEL tool and put the cursor over each point. When you see a black hand hovering over point, click.

4. Create a transformation.
a. Click on the ARROW tool. Using the cursor, drag a marquee (box) around the triangle to select it. The segments in the triangle will turn pink.
b. Go to the TRANSFORM menu. Choose TRANSLATE

c. Choose RECTANGULAR Translation Vector.
d. Enter a number between 1 and 10 into the horizontal and vertical distance boxes.
e. Click on TRANSLATE.
f. Click on the LABEL tool and label the new triangle ($A^{\prime}, B^{\prime}, C^{\prime}$)

5. Measure Distance
a. Use the ARROW tool to select one pair of corresponding points (A, A^{\prime}).
b. Go to the MEASURE menu and choose DISTANCE.
c. Repeat steps a and b to the other two pairs of corresponding points (B, B and C, C). What do you notice?

6. Use the ARROW tool to drag a vertex of your original triangle. What do you notice?
7. Changing the horizontal and vertical values.
a. Go to EDIT menu and continue to choose UNDO until only your original pink triangle is left.
b. Go to TRANSFORM menu and choose TRANSLATE. Change the horizontal and vertical values to negative numbers. What happened?
c. MEASURE distances between the new corresponding points. What do you notice?

Exploring Rotations

1. New Sketch: To open a new sketch go to FILE and click on New Sketch

2. Create a triangle.
a. Using the SEGMENT tool, construct a triangle.
b. Drag the cursor and release for each segment.

3. Label the triangle $A B C$.
b. Click on the LABEL tool and put the cursor over each point. When you see a black hand hovering over point, click.

4. Create a rotation.
a. Using the POINT tool, construct a point outside your triangle.
b. While the new point is still selected (pink), go to the TRANSFORM menu and choose MARK CENTER.

c. Using the ARROW tool, drag a marquee (box) around your triangle to select it. The triangle will turn pink.
d. Go to the TRANSFORM menu and choose ROTATE.

e. Choose FIXED
f. Enter an angle measure between 45° and 120°.
g. Click on ROTATE
h. Click on the LABEL tool and label the new triangle ($A^{\prime}, B^{\prime}, C^{\prime}$)

5. Measure Distance
a. Use the ARROW tool to select one pair of corresponding points (A, A).
b. Go to the MEASURE menu and choose DISTANCE.
c. Repeat steps a and b to the other two pairs of corresponding points (B, B and C, C). What do you notice?

6. Measure the angle formed by corresponding points and center of rotation
a. Select the points with the ARROW tool (C, center, C). They will turn pink.
b. Go to the MEASURE menu and choose ANGLE
c. Repeat steps a and b to measure the other 2 angles. What do you notice?

7. Use the ARROW tool to drag a vertex of your original figure. What do you notice?

Exploring Reflections

1. New Sketch: To open a new sketch go to FILE and click on New Sketch

2. Create a triangle.
a. Using the SEGMENT tool, construct a triangle.
b. Drag the cursor and release for each segment.

3. Label the triangle $A B C$.
a. Click on the LABEL tool and put the cursor over each point. When you see a black hand hovering over point, click.

4. Create a reflection
a. Using the SEGMENT tool, construct a line segment to the right of your triangle.

Keep the line pink.
b. Go to the TRANSFORM menu and choose MARK MIRROR. This is the mirror line.

c. Using the ARROW tool, drag a marquee (box) around your triangle to select it. The triangle will turn pink.
d. Go to the TRANSFORM menu and choose REFLECT.
e. Using the LABEL tool, label the corresponding points.

5. Measure Distance
a. Use the ARROW tool to select one pair of corresponding points $\left(A, A^{\prime}\right)$.
b. Go to the MEASURE menu and choose DISTANCE.
c. Repeat steps a and b to the other two pairs of corresponding points (B, B) and (C, C). What do you notice?

6. Measure distance from the point of intersection
a. Pick point C and the intersection point of $C C^{\prime}$ with the mirror line. They will turn pink.
b. Go to the MEASURE menu and choose DISTANCE
c. Repeat steps a and b to measure the distance of the corresponding point (C) from the point of intersection on the mirror line. What do you notice about the measurements?
d. Measure the distance of the rest of the points to the point of intersection with the mirror line (A, A^{\prime}, B, and B^{\prime}). How do the distance measurements compare to your measurements in question 5 ?

7. Measure an Angle from the point of intersection
a. Using the SEGMENT tool, construct a line segment between each pair of corresponding points $\left(A, A^{\prime}\right)\left(B, B^{\prime}\right)$ and $\left(C, C^{\prime}\right)$.
b. Pick point C, the intersection point of $\overline{C C^{\prime}}$ and a second point of intersection on the mirror line (see second diagram). They will turn pink.
c. Go to the MEASURE menu and choose ANGLE
d. Repeat the above steps to measure the angles formed by $A A^{\prime}$ and $B B^{\prime}$. What do you notice?

8. Drag any point on the original triangle. What happens to the measurements?
9. Drag the mirror line. What happens to the measurements?

