Adding and Subtracting Rational Expressions Interactive Math Notebook Activities and Scaffolded Notes

- Review: Simplifying Fractions
- What is a common denominator?
- Steps for Adding Fractions with a Common Denominator
- Adding Fractions with a Common Denominator
- Steps for Subtracting Fractions with a Common Denominator - Distribute Before Adding Fractions
- Distribute Before Subtracting Fractions
- Adding/Subtracting Fractions with Different Denominators
- Adding/ Subtracting an Integer and a Fraction
- AddingISubtracting a Polynomial and a Fraction
- Finding the Least Common Denominator (Denominators are Integers)
- Finding the Least Common Denominator (Denominators are Terms)
- Finding the Least Common Denominator (Denominators are Polynomials)
- Use Common Denominators to Solve Equations
- What is a proportion?

Scaffolded Notes

First, factor the numerator and denominator.
Then, cancel out factors that occur in both the numerator and denominator.

$\frac{8}{12}$	$\frac{9 x y}{3 x^{2}}$	$\frac{12 x+4}{8 y}$
$\frac{x+1}{4 x+4}$	$\frac{x-5}{x^{2}-25}$	$\frac{2 x+8}{x^{2}+8 x+16}$

Review: Simplifying Fractions
First, factor the numerator and denominator.
Then, cancel out factors that occur in both the numerator and denominator.

$\frac{8}{12}$	$\frac{9 x y}{3 x^{2}}$	$\frac{12 x+4}{8 y}$
$\underline{2 \cdot 2 \cdot 2}$	$\underline{3 \cdot 3 \cdot x \cdot y}$	$\underline{2 \cdot 2(3 x+1)}$
$\overline{z \cdot X \cdot 3}$	$3 \cdot x \cdot x$	$\overline{z \cdot z \cdot 2 \cdot y}$
$\frac{2}{3}$	$\frac{3 y}{x}$	$\frac{3 x+1}{2 y}$
$\frac{x+1}{4 x+4}$	$\frac{x-5}{x^{2}-25}$	$\frac{2 x+8}{x^{2}+8 x+16}$
$\frac{(x+1)}{4(x+1)}$	$\frac{(x-5)}{(x+5)(x-5)}$	$\frac{2(x+4)}{(x+4)(x+4)}$
$\frac{1}{4}$	$\frac{1}{x+5}$	$\frac{2}{x+4}$

What is a common denominator?
When two fractions have the same denominator it is said that they have common denominators.

Example

The fractions $\frac{4 x-1}{2 a}$ and $\frac{25}{2 a}$
have a common denominator of 2a.

Step I:

Add the numerators, but Keep the denominator the same.

Step 2:
Combine like terms and simplify.

Adding Fractions with a Common Denominator

Add two fractions with a common integer as a denominator.

Add two fractions with a common

 variable term as a denominator.Add two fractions with a common binomial as a denominator.

Add two fractions with a common polynomial as a denominator.

Steps for Subtracting Fractions with a Common Denominator

Step I:

Replace the subtraction sign with an addition sign and distribute the subtraction sign to the numerator that follows.

Step 2:
Add the numerators, but keep the denominator the same.

Step 3:
Combine like terms and simplify.

Step I:

Add the numerators, but Keep the denominator the same.
$\frac{x}{5}+\frac{3 x}{5}$
$x+3 x$
5
Step 2:
Combine like terms and simplify.

Adding Fractions with a Common Denominator

Add two fractions with a common integer as a denominator.	$\frac{2}{3}+\frac{5}{3}$ $\frac{2+5}{3}=\frac{7}{3}$
Add two fractions with a common variable term as a denominator.	$\frac{3}{x}+\frac{8}{x}$ $\frac{3+8}{x}$$=\frac{11}{x}$

Steps for Subtracting Fractions with a Common Denominator

Step I:
Replace the subtraction sign with an addition sign and distribute the subtraction sign to the numerator that follows.
Step 2:
Add the numerators, but keep the denominator the

$$
\frac{2 x}{9}-\frac{4 x}{9}
$$ same.

Step 3:
Combine like terms and simplify.

Distribute Before Adding Fractions

First, Make sure that the numerators and denominators are in simplest form.
Then, add the numerators.
Finally, combine like terms.

$$
\begin{array}{l|l|l}
\hline \frac{5(x+1)}{2}+\frac{3(x+2)}{2} & \frac{2(x+4)}{3}+\frac{8(x-1)}{3} & \frac{9(x+3)}{7 x}+\frac{(x+2)}{7 x} \\
\hline \frac{-1(x+2)}{6 x}+\frac{4(x+1)}{6 x} & \frac{2 x(x+3)}{2 x^{2}}+\frac{3 x(x+2)}{2 x^{2}} & \frac{2 x(3 x+7)}{9 x^{3}}+\frac{x(x-2)}{9 x^{3}}
\end{array}
$$

Distribute Before Subtracting Fractions
First, make sure that the numerators and denominators are in simplest form.
Then, change the subtraction problem to an addition problem and add the numerators.
Finally, combine like terms.

$$
\frac{5(x+3)}{4}-\frac{2(x+1)}{4} \quad \frac{4(x+1)}{2 x}-\frac{2(x+5)}{2 x} \quad \frac{-x(3 x+1)}{x^{3}}-\frac{9(x-1)}{x^{3}}
$$

Distribute Before Adding Fractions

First, make sure that the numerators and denominators are in simplest form.
Then, add the numerators.
Finally, combine like terms.

$$
\begin{array}{c|c|c}
\hline \frac{5(x+1)}{2}+\frac{3(x+2)}{2} & \frac{2(x+4)}{3}+\frac{8(x-1)}{3} & \frac{9(x+3)}{7 x}+\frac{2(x+2)}{7 x} \\
\frac{5 x+5}{2}+\frac{3 x+6}{2} & \frac{2 x+8}{3}+\frac{8 x-8}{3} & \frac{9 x+27}{7 x}+\frac{2 x+4}{7 x} \\
\frac{5 x+5+3 x+6}{2} & \frac{2 x+8+8 x-8}{3} & \frac{9 x+27+2 x+4}{7 x} \\
\frac{8 x+11}{2} & \frac{10 x}{3} & \frac{11 x+31}{7 x} \\
\hline \frac{-1(x+2)}{6 x}+\frac{4(x+1)}{6 x} & \frac{2 x(x+3)}{2 x^{2}}+\frac{3 x(x+2)}{2 x^{2}} & \frac{2 x(3 x+7)}{9 x^{3}}+\frac{x(x-2)}{9 x^{2}}+\frac{3 x^{2}+6 x}{2 x^{2}} \\
\frac{-x-2}{6 x}+\frac{4 x+4}{6 x} & \frac{2 x^{2}+6 x+3 x^{2}+6 x}{2 x^{2}} & \frac{6 x^{2}+14 x+\frac{x^{2}-2 x}{9 x^{3}}}{9 x^{3}-2 x} \\
\frac{-x-2+4 x+4}{6 x} & \frac{5 x^{2}+12 x}{2 x^{2}}=\frac{5 x+12}{2 x} & \frac{7 x^{2}+12 x}{9 x^{3}}=\frac{7 x+12}{9 x^{2}} \\
\hline
\end{array}
$$

Distribute Before Subtracting Fractions

First, make sure that the numerators and denominators are in simplest form.
Then, change the subtraction problem to an addition problem and add the numerators.
Finally, combine like terms.

$\frac{5(x+3)}{4}-\frac{2(x+1)}{4}$	$\frac{4(x+1)}{2 x}-\frac{2(x+5)}{2 x}$	$\frac{-x(3 x+1)}{x^{3}}-\frac{9(x-1)}{x^{3}}$
$\frac{5 x+15}{4}-\frac{2 x+2}{4}$	$\frac{4 x+4}{2 x}-\frac{2 x+10}{2 x}$	$\frac{\left(-3 x^{2}\right)+(-x)}{x^{3}}-\frac{9 x-9}{x^{3}}$
$\frac{5 x+15+(-2 x)+(-2)}{4}$	$\frac{4 x+4+(-2 x)+(-10)}{2 x}$	$\frac{\left(-3 x^{2}\right)+(-x)+(-9 x)+9}{x^{3}}$
$\frac{3 x+13}{4}$	$\frac{2 x-6}{2 x}=\frac{x-3}{x}$	$\frac{-3 x^{2}+(-10 x)+9}{x^{3}}$

Adding/Subtracting Fractions with Different Denominators

Step I:
Find a common denominator between your two fractions.

Step 2:
Substitute your equivalent
fractions into your problem.
Step 3:
If it is not already an addition problem, change it to addition.

Step $4:$
Add the numerators, but keep the denominator the same.

Step 5:
Combine like terms and simplify.

AddingISubtracting an Integer and a Fraction

Step I:

Rewrite your integer as a fraction.

Step 2:
Find a common denominator between your two fractions.

Step 3:
Substitute your equivalent fractions into your problem.

Step 4 :
If it is not already an addition problem, change it to addition.

Step 5:
Add the numerators, but keep the denominator the same.

Step 6:
Combine like terms and simplify.

Adding/Subtracting Fractions with Different Denominators

Step I:

Find a common denominator between your two fractions.

Step 2:
Substitute your equivalent
fractions into your problem.
Step 3:
If it is not already an addition problem, change it to addition.

Step 4 :
Add the numerators, but keep the denominator the same.

Step 5:
Combine like terms and simplify.

$$
\frac{4 x}{6}+\frac{x}{6}
$$

$\frac{4 x+x}{6}$
-
,

$$
\frac{4 x}{6}+\frac{x}{6}
$$

e

AddingISubtracting a Polynomial and a Fraction

Step I:

Rewrite your integer as a fraction.

Step 2:
Find a common denominator between your two fractions.

Step 3:
Substitute your equivalent fractions into your problem.

Step 4 :
If it is not already an addition problem, change it to addition.

Step 5:
Add the numerators, but Keep the denominator the same.

Step 6:
Combine like terms and simplify.

Finding the Least Common Denominator (Denominators are Integers)

Step I:	Step 2:	Step 3:
Factor the	Multiply each	Multiply each numerator
denominators.	denominator by the	by the factors of the
	factors of the other	other denominator that
	denominator that are	are Missing.
	missing.	

Step 4:
Simplify.

AddingISubtracting a Polynomial and a Fraction

Step I:
Rewrite your polynomial as a fraction.

Step 2:
Find a common denominator between your two fractions.

$$
\begin{aligned}
& (x+1)-\frac{3}{x} \\
& \frac{(x+1)}{1}-\frac{3}{x} \\
& \frac{(x+1)}{1}-\frac{3}{x} \\
& \mathrm{x} \cdot \frac{x+1}{1}=\frac{x^{2}+x}{x}
\end{aligned}
$$

Step 3:
Substitute your equivalent

$$
\frac{x^{2}+x}{x}-\frac{3}{x}
$$

fractions into your problem.
Step 4 :
If it is not already an addition

$$
\frac{x^{2}+x}{x}+\frac{(-3)}{x}
$$ problem, change it to addition.

Step 5:
Add the numerators, but Keep the
$\frac{x^{2}+x+(-3)}{x}$ denominator the same.

Step 6:
Combine like terms and simplify.

$$
\frac{x^{2}+x+(-3)}{x}
$$

Finding the Least Common Denominator (Denominators are Integers)

Step I: Factor the denominators.	Step 2: Multiply each denominator by the factors of the other denominator that are missing.	Step 3: Multiply each numerator by the factors of the other denominator that are missing.	Step 4: Simplify.
$\frac{5}{12}+\frac{7}{8}$	$\frac{5}{12 \cdot 2}=\frac{}{24}$	$\frac{5 \cdot 2}{12 \cdot 2}=\frac{10}{24}$	$\frac{10}{24}+\frac{21}{24}$
12 8 $2 \cdot 6$ $2 \cdot 4$ $2 \cdot 3$ $2 \cdot 2$	$\frac{7}{8 \cdot 3}=\frac{}{24}$	$\frac{7 \cdot 3}{8 \cdot 3}=\frac{21}{24}$	$\frac{31}{24}$
$12=2 \cdot 2 \cdot 3 \quad 8=2 \cdot 2 \cdot 2$			

Finding the Least Common Denominator (Denominators are Terms)

Step I: Factor the denominators.	Step 2: Multiply each denominator by the factors of the other denominator that are missing.	Step 3: Multiply each numerator by the factors of the other denominator that are missing.	Step 4: Simplify.

Finding the Least Common Denominator (Denominators are Polynomials)

Step I:	Step 2:	Step 3:	Step 4:
Factor the			
denominators.	Multiply each	Multiply each numerator	Simplify.
	denominator by the factors of the other denominator that are other denominator that missing.	are missing.	

Finding the Least Common Denominator (Denominators are Terms)

Step I: Factor the denominators.	Step 2: denominatyor by the factors of the other denominator that are missing.	Step 3: Multiply each numerator factors of the other denominator that are missing.	Step 4: Simplify.
$\frac{2}{x^{2} y}+\frac{4}{x y^{2}}$	$\frac{2}{x^{2} y \cdot y}=\frac{2}{x^{2} y^{2}}$	$\frac{2}{x^{2} y \cdot y}=\frac{2 y}{x^{2} y^{2}}$	$\frac{2 y}{x^{2} y^{2}}+\frac{4 x}{x^{2} y^{2}}$
$x^{2} y=x x y \quad x y^{2}=x y y$	$\frac{4}{x y^{2} \cdot x}=\frac{4}{x^{2} y^{2}}$	$\frac{4}{x y^{2} \cdot x}=\frac{4 x}{x^{2} y^{2}}$	$\frac{2 y+4 x}{x^{2} y^{2}}$

Finding the Least Common Denominator (Denominators are Polynomials)

Step I: Factor the denominators.	Step 2: Multiply each denominator by the factors of the other denominator that are missing.	Step 3: Multiply each numerator by the factors of the other denominator that are missing.	Step 4: Simplify.
$\frac{3}{x^{2}-25}+\frac{5}{2 x+10}$ $x^{2}-25=(x+5)(x-5)$	$\begin{aligned} & \frac{3}{x^{2}-25}=\frac{2(x+5)(x-5)}{2 x+10}=\frac{5}{2(x+5)(x-5)} \\ & \frac{5}{2 x+1} \end{aligned}$	$\begin{aligned} & \frac{3}{x^{2}-25}=\frac{2 \cdot 3}{2(x+5)(x-5)} \\ & \frac{5}{2 x+10}=\frac{5(x-5)}{2(x+5)(x-5)} \end{aligned}$	$\begin{gathered} \frac{6}{2(x+5)(x-5)}+\frac{5 x-25}{2(x+5)(x-5)} \\ \frac{6+5 x-25}{2(x+5)(x-5)} \\ \frac{5 x-19}{2(x+5)(x-5)} \end{gathered}$

Use Common Denominators to Solve Equations

$\frac{2}{3}+\frac{5}{x}=\frac{14}{3}$	$\frac{x}{5}+\frac{2 x}{5}=4$	
$x+\frac{24}{x}=11$	$\frac{3}{x-1}=\frac{1}{3}-\frac{1}{3}-\frac{6}{x-1}$	$\frac{2 x}{5}-\frac{x}{10}=4$

Step I:
Gross multiply.

Step 2:
Simplify

Use Common Denominators to Solve Equations

$$
\begin{aligned}
& \frac{2}{3}+\frac{5}{x}=\frac{14}{3} \\
& 3 x\left(\frac{2}{3}+\frac{5}{x}=\frac{14}{3}\right) \\
& \frac{3 x \cdot 2}{\not \partial}+\frac{3 x \cdot 5}{\not x}=\frac{\not x \cdot 14}{\not x} \\
& 2 x+5=14 x \\
& \begin{array}{c}
x=\frac{5}{12} \\
2 x+\frac{24}{x}=11
\end{array} \\
& 3 x\left(\frac{2 x}{3 x}+\frac{24}{x}=11\right) \\
& \frac{\partial x \cdot 2 x}{\not \partial x}+\frac{3 x \cdot 24}{\not x}=3 x \cdot 11 \\
& 2 \mathrm{x}+72=33 \mathrm{x} \\
& x=\frac{72}{31} \\
& \frac{x+1}{9}=\frac{x}{3}-\frac{1}{3} \\
& 5\left(\frac{x}{5}+\frac{2 x}{5}=4\right) \\
& \frac{5 \cdot x}{5}+\frac{5 \cdot 2 x}{5}=5 \cdot 4 \\
& x+2 x=20 \\
& 9\left(\frac{x+1}{9}=\frac{x}{3}-\frac{1}{3}\right) \\
& \frac{9(x+1)}{y}=\frac{3 x}{3}-\frac{3 \cdot 1}{3} \\
& x+1=3 x-3 \\
& x=2 \\
& \frac{2 x}{5}-\frac{x}{10}=4 \\
& 2(x-1) \cdot\left(\frac{3}{x-1}=\frac{1}{2}-\frac{6}{x-1}\right) \\
& \frac{2(x-1) \cdot 3}{x-1}=\frac{2(x-1) \cdot 1}{2}-\frac{2(x-1) \cdot 6}{x-1} \\
& 6=x-1-12 \\
& x=19
\end{aligned}
$$

Interactive Math Notebook Review Activities

Common Denominator

Define and give an example.

1. Cut along the bold lines and fold along the dotted lines.
2. Write your examples inside of the folds.
3. Insert your finished matchbook into your math notebook.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap and write your examples in the inside pages.
4. Insert your finished book into your math notebook.

Distribute before Adding Fractions

 Give an example.
Distribute before Subtracting Fractions Give an example.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap and write your definitions and examples in the inside pages.
4. Insert your finished book into your math notebook.
5. Cut along the bold lines and fold along the dotted lines.
6. When you fold along the dotted line you will have a mini-book.
7. Flip up each flap and write your definitions and examples in the inside pages.
8. Insert your finished book into your math notebook.

Finding the Least Common Denominator

 Subtract an integer and a
fraction.

Subtract a

fraction.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a triangle flap book.
3. Flip up each flap and write your examples in the inside pages.
4. Insert your finished book into your math notebook.

INB SAMPLES

Please be sure to visit our store for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

A special thank you to the following for providing quality borders, fonts, clip art, ete.

COPYRIGHT INFORMATION

©2015 Apples and Bananas

