Simplifying/Evaluating Expressions	
 KEY WORDS Which is EQUIVALENT SIMPLIFY 	WHAT TO DO Choose a unique random number (not equal to 0 or 1) to substitute for each variable. The number 2
 Which is FACTORED COMPLETELY = 	usually works. Use the calculator to calculate the value of the problem, write it down. Calculate the value of each answer choice. The value of the answer choice that matches the value problem is
	the answer.
	It may be helpful to use the STO button in the calculator to substitute.
Which expression is equivalent to $\frac{18c^8d^9}{9c^3d^6}$? Assume the denominator does not equal zero.	
A $2c^{5}d^{3}$	
B $9c^{5}d^{3}$	
C $2c^{11}d^{15}$	
D $9c^{11}d^{15}$	
Factors, Roots, Zeros, Intercepts	
	Remember
• root	• zeros are values of x that make the
 solutions (given graph) 	function (y value) equal zero
factors	• Zeros, roots, solutions are the <i>x</i> -intercepts
	on a graph
	 A polynomial and its factors, when
	graphed, will intersect at the x axis
Look at function g.	
$g(x) = 9x^2 - 16$	
Which set contains only the zeros of function g ?	
$A\left\{\frac{-4}{3},\frac{4}{3}\right\}$	
B $\left\{ \frac{-4}{3}, 0, \frac{4}{3} \right\}$	
C {-16,9}	
D { -16, 0, 9 }	

Algebra I Test Taking Strategies

Solving Equations and Systems of Equations	
KEY WORDS	WHAT TO DO
Find the SOLUTION	For one equation (linear or quadratic), in the
• SOLVE the equation	calculator, put the left side of the equation as y_1 ,
What value will make the statement true	put the right side of the equation as y_2 . Graph the
• <i>x</i> =	equations. Find the intersection $(2^{ND}, CALC,$
	5.Intersect). The solution is the <i>x</i> –value .
	For systems of equations (two equations) solve
	hoth equations for y. In the calculator, but the
	first equation in v_1 , put the second equation in v_2
	Graph the equations, find the point of intersection.
	The solution is the <i>x</i> -value and the <i>y</i> -value.
	You may have to adjust the WINDOW to see the
	point of intersection.
_	$\frac{6p+4}{6}=\frac{4p-8}{3}$
Look at the system of equations.	
ſ	y = -x + 2
1	7x + 4y = -1
l	
What is the value of x for the solution to this system of equations?	
A-5 B-3 C3 D	5
Direct Variations	
KEY WORDS	WHAT TO DO
Varies Directly	Remember for direct variations
Direct Variation	 passes through the origin
	• use $y = kx$
	• <i>k</i> is the constant of variation (slope)

• when x gets big, y gets big (for positive values)

