Equations, Inequalities, and Functions Interactive Math Notebook Activities and Scaffolded Notes

- What is a rational number?
- Multiplying and Dividing Integers
- Rational Numbers on the Number Line
- Graphing Inequalities on the Number Line - Reviewing Inequalities
- Solving Inequalities Using the Addition Principle
- Solving Inequalities Using the Subtraction Principle Using the Addition and Subtraction Principles to Get the X-Terms on One Side of the Inequality
- Solving Inequalities Using the Multiplication Principle
- Solving Inequalities Using the Division Principle
- Solving Multi-Step Inequalities
- What ís an absolute value?
- Absolute Value Equations
- Absolute Value Inequalities
- Solving Different Types of Absolute Value Equations
- Solving Different Types of Absolute Value Inequalities - Relations and Functions
- Substituting Values in the Function
- Organizing Values of a Function Using a Table

Scaffolded Notes

Is an integer a rational number?

Is a mixed number a rational number?

Is a decimal a rational number?

Is a repeating decimal a rational number?

Multiplying and Dividing Integers
 Give an example for each situation.

| Positive x Positive $=$ | Positive \div Positive $=$ |
| :--- | :--- | \qquad

Positive x Negative $=$ \qquad Positive \div Negative $=$ \qquad

Negative x Positive $=$ \qquad Negative \div Positive $=$ \qquad

Negative x Negative $=$ \qquad

$$
\text { Negative } \div \text { Negative }=
$$

\qquad

Rational Numbers on the Number Line

Locate the number \qquad on the number line.

Locate the number \qquad on the number line.

Locate the number \qquad on the number line.

Locate the number \qquad on the number line.

Is an integer a rational number?
Any number that can be written as a fraction of two integers and placed on the number line.

Is a mixed number a rational number?
Yes, you can change a mixed number into an improper fraction.

Is a decimal a rational number?
Yes, as long as the decimal terminates.

Is a repeating decimal a rational number?
No, terminating decimals do not end so they are in a different number classification.

Multiplying and Dividing Integers
 Give an example for each situation.

Positive x Positive $=$ Positive
$5 \times 6=30$

Positive \times Negative $=$ Negative
$5 \times-6=-30$

Negative x Positive $=$ Negative
$-5 \times 6=-30$

Negative x Negative $=$ Positive $-5 \times-6=30$

> Positive \div Positive $=$ Positive $36 \div 3=12$

Positive \div Negative $=$ Negative

$$
36 \div-3=-12
$$

Negative : Positive $=$ Negative

$$
-36 \div 3=-12
$$

Negative \div Negative $=$ Positive

$$
-36 \div-3=12
$$

Rational Numbers on the Number Line

Locate the number $\frac{2}{3}$ on the number line.
Locate the number $\frac{7}{6}$ on the number line.

Locate the number - $\frac{3}{2}$ on the number line.

Graphing Inequalities on the Number Line

Reviewing Inequalities

Reviewing Inequalities

The Addition Principle for Inequalities

Step I:

Write your inequality.

Step 2:

Can you combine like terms? If not, we need to get rid of the number that is not attached to the variable.

Step 3:

What is the value of x ?

The Subtraction Principle for Inequalities
Step I:
Write your equation.

Step 2:
Can you combine like terms? If not, we need to get rid of the number that is not attached to the variable.

Step 3:
What is the value of x ?

Using the Addition and Subtraction Principles to Get the X-Terms on One Side of the Inequality For each of the following equations, there are x-terms on both sides of the equal sign. Your goal will be to get all of the x-terms on one side of the equation and all of the number terms on the other. Then, solve for your x-term.

$6 x+10>5 x+25$	$3 x+12 \leq 2 x+17$	$7 x-15 \geq 7+6 x$

The Addition Principle for Inequalities

Step I:

Write your inequality.

Step 2:

Can you combine like terms? If not, we need to get rid of the number that is not attached to the variable.

Step 3:
What is the value of X?

The Subtraction Principle for Inequalities

Step I: Write your equation.	$11+x \geq 1$
Step 2: Can you combine like terms? If not, we need to get rid of the numper that is not attached to the variable.	$11+x \geq 1$ -11
Step 3: What is the value of x ?	x is any number greater
or equal to -10	

Using the Addition and Subtraction Principles to Get the X-Terms on One Side of the Inequality For each of the following equations, there are x-terms on both sides of the equal sign. Your goal will be to get all of the x-terms on one side of the equation and all of the number terms on the other. Then, solve for your x-term.

$6 x+10>5 x+25$	$3 x+12 \leq 2 x+17$	$7 x-15 \geq 7+6 x$
$6 x>5 x+15$	$3 x \leq 2 x+5$	$7 x \geq 22+6 x$
$x>15$	$x \leq 5$	$x \geq 22$
$x-4+11<26$	$5 x-6 \leq 4 x+1$	$2 x+1>x-4$
$x+7<26$	$5 x \leq 4 x+7$	$2 x>x-5$
$x<19$	$x \leq 7$	$x>-5$

The Multiplication Principle for Inequalities

Step I:
Write your inequality.

Step 2:

Using multiplication cancels out division. If you need to get rid of division by a number you will use multiplication.
Remember, if you do something to one side of the equation, you have to do it to the other too. Now, this is important, if you have to multiply by a negative number you will need to flip the inequality sign.

Step 3:
What is the value of x ?

The Division Principle for Inequalities

Step I: Write your inequality.	Dividing by a Positive Number	Dividing by a Negative Number
Step 2: Using division cancels out multiplication. If you need to get rid of multiplication by a number you will use division.		
Remember, if you		
do something to one		
side of the equation,		
you have to do it to		
the other too. Now,		
this is important, if		
you have to divide		
by a negative		
number you will		
need to flip the		
inequality sign.		
Step 3: What is the value of x?		

Solving Multi-Step Inequalities

Use all of the properties of inequalities that you have learned to solve the problems below. Remember, if you have to use multiplication or division by a negative number you will need to flip the inequality sign.

$\frac{x+15}{2}<-5$	$\frac{x-6}{-10} \geq-4$	$-2 x+15<7$
$5 x+1 \leq-44$	$\frac{x}{-7}+5 \leq 12$	$\frac{x}{2}-10<-19$

The Multiplication Principle for Inequalities

Step I:	Multiplying by a	Multiplying by a

Write your inequality.
Step 2:

Using multiplication cancels out division. If you need to get rid of division by a
number you will use rid of division by a
number you will use multiplication. Remember, if you do something to one side of the equation, you have to do it to the other too. Now, this is important, if you have to multiply by a negative number you will need to flip the inequality sign.

Step 2:

Step 3:
What is the value of x ? Positive Number Negative Number
$\frac{x}{-6}<2$

The Division Principle for Inequalities

Step I: Write your inequality.	Dividing by a Positive Number $11 x \leq 44$	Dividing by a Negative Number $-9 x \geq-54$
Step 2: Using division cancels out multiplication. If you need to get rid of multiplication by a number you will use division. Remember, if you do something to one side of the equation, you have to do it to the other too. Now, this is important, if you have to divide by a ne.gative number you will need to flip the inequality sign.	$\begin{aligned} 11 x & \leq 44 \\ \frac{11 x}{11} & \leq \frac{44}{11} \\ x & \leq 4 \end{aligned}$	$\begin{aligned} -9 x & \geq-54 \\ \frac{-9 x}{-9} & \leq \frac{-54}{-9} \\ x & \leq 6 \end{aligned}$
Step 3: What is the value of x ?	x is any number less than or equal to 4	x is any number less than or equal to 6

Solving Multi-Step Inequalities
Use all of the properties of inequalities that you have learned to solve the problems below. Remember, if you have to use multiplication or division by a negative number you will need to flip the inequality sign.

$\frac{x+15}{2}<-5$	$\frac{x-6}{-10} \geq-4$	$-2 x+15<7$
$2 \cdot \frac{x+15}{2}<-5 \cdot 2$	$-10 \cdot \frac{x-6}{-10} \geq-4 \cdot(-10)$	$-2 x+15<7$
$x+15<-10$		
$-15-15$	$x-6 \leq 40$	$-15-15$
$x<-25$	$x \leq 46$	$\frac{-2 x}{-2}<\frac{-8}{-2}$
$5 x+1 \leq-44$	$\frac{x}{-7}+5 \leq 12$	$x>4$
$5 x+1 \leq-44$	$x+\frac{x}{-7}+5 \leq 12 \cdot(-7)$	$\frac{x}{2}-10<-19$
-1	$x+5 \geq-84$	x
$\frac{5 x}{5} \leq \frac{-45}{5}$	-5	-5
$x \leq-9$	$x \geq-89$	$2 \cdot \frac{x}{2}<-9 \cdot 2$

Illustrate absolute value using a number line.

Absolute Value Equations

Step I:

Write your equation.

Step 2:

Simplify the absolute
value equation so
that the absolute value ìs on one side of the equation and everything else is on the other side of the equation.

Step 3:

First, set the expression that is inside of your absolute value equal to what is on the other side of the equation.
Then, set the expression that is inside of your absolute value equal to the opposite of what is on the other side of the equation. Solve each equation.

Step $4:$

Check your solutions.

Absolute Value Inequalities

Step I:
Write your inequality.
Step 2:
Simplify the absolute value inequality so that the absolute value is on one side of the inequality sign and everything else is on the other side of the inequality sign.

Step 3:
First, rewrite the
inequality just as it its without the
absolute value
symbols.
Then, rewrite the inequality without the absolute value symbols, but this time, flip the inequality symbol and change the number that is on the opposite side of the inequality to its opposite.
Solve each inequality.
Step 4:
Check your solutions.

The distance from zero to the number on a number line

Give an example with symbols.

$$
|-5|=5
$$

Illustrate absolute value using a number line.

Absolute Value Equations		
Step I: Write your equation.	$2\|x+5\|=14$	
Step 2: Simplify the absolute value equation so that the absolute value is on one side of the equation and everything else is on the other side of the equation.	$\begin{gathered} \frac{2\|x+5\|}{2}=\frac{14}{2} \\ \|x+5\|=7 \end{gathered}$	
Step 3: First, set the expression that is inside of your absolute value equal to what is on the other side of the equation. Then, set the expression that is inside of your absolute value equal to the opposite of what is on the other side of the equation. Solve each equation.	$\begin{gathered} x+5=7 \\ -5 \quad-5 \\ x=2 \end{gathered}$	$\begin{array}{cc} x+5=-7 \\ -5 \quad-5 \\ x=-12 \end{array}$
Step 4: Check your solutions.	$\begin{gathered} 2\|2+5\|=14 \\ 2\|7\|=14 \\ \|7\|=7 \\ 7=7 \end{gathered}$	$\begin{gathered} 2\|-12+5\|=14 \\ 2\|-7\|=14 \\ \|-7\|=7 \\ 7=7 \end{gathered}$

Absolute Value Inequalities		
Step I: Write your inequality.	$\|x\|-6>1$	
Step 2: Simplify the absolute value inequality so that the absolute value is on one side of the inequality sign and everything else ís on the other side of the inequality sign.	$\|x\|>7$	
Step 3: First, rewrite the inequality just as it its without the absolute value symbols. Then, rewrite the inequality without the absolute value symbols, but this time, flip the inequality symbol and change the number that is on the opposite side of the inequality to its opposite. Solve each inequality.	$x>7$	$x<-7$
Step 4: Check your solutions.	$\begin{gathered} \|8\|-6>1 \\ 8-6>1 \\ 2>1 \end{gathered}$	$\begin{gathered} \|-8\|-6>1 \\ 8-6>1 \\ 2>1 \end{gathered}$ "Apples und Banonnosise

Solving Different Types of Absolute Value Equations

Solve an absolute value equation with a variable inside of the absolute value.		Solve an absolute value equation with a variable inside of the absolute value and addition on the outside of the absolute value.	
Solve an absolute value equation with a binomial in the absolute value.		Solve an absolute value equation with a binomial in the absolute value and subtraction on the outside of the absolute value.	
Solve an absolute value equation with division inside of the absolute value.		Solve an absolute value equation with a variable inside of the absolute value and multiplication and addition on the outside of the absolute value.	

Solving Different Types of Absolute Value Inequalities

Solve an absolute value inequality with a variable inside of the absolute value.		Solve an absolute value inequality with a variable inside of the absolute value and addition on the outside of the ebsolute value.	
Solve an absolute value inequality with a binomial in the absolute value.		Solve an absolute value inequality wilt a binomial in the absolute value and subtraction on the outside of the absolute value.	
Solve an absolute value inequality with division inside of the absolute value.		Solve an absolute value inequality with a variable inside of the absolute value and multiplication and addition on the outside of the absolute value.	

Solving Different Types of Absolute Value Equations

Solve an absolute value equation with a variable inside of the absolute value.	$\begin{gathered} \|x\|=4 \\ x=4 \quad x=-4 \end{gathered}$	Solve an absolute value equation with a variable inside of the absolute value and addition on the outside of the absolute value.	$\begin{gathered} \|x\|+7=17 \\ \|x\|=10 \\ x=10 \quad x=-10 \end{gathered}$
Solve an absolute value equation with a binomial in the absolute value.	$\begin{gathered} \|x+1\|=-2 \\ x+1=-2 \\ x=-3 \\ x+1=2 \\ x=1 \end{gathered}$ But, neither of these solutions work when you check your answers so there is no solution.	Solve an absolute value equation with a binomial in the absolute value and subtraction on the outside of the absolute value.	$\begin{gathered} \|x+9\|-5=13 \\ \|x+9\|=18 \\ x+9=18 \quad x+9=-18 \\ x=9 \quad x=-27 \end{gathered}$
Solve an absolute value equation with division inside of the absolute value.	$\begin{aligned} & \quad\left\|\frac{x}{2}\right\|=5 \\ & \frac{x}{2}=5 \quad \frac{x}{2}=-5 \\ & x=10 \quad x=-10 \end{aligned}$	Solve an absolute value equation with a variable inside of the absolute value and multiplication and addition on the outside of the absolute value.	$\begin{gathered} 5\|x\|+7=6 \\ 5\|x\|=-1 \\ \|x\|=-\frac{1}{5} \\ x=-\frac{1}{5} \quad x=\frac{1}{5} \end{gathered}$ But, neither of these solutions work when you check your answers so there is no solution

Solving Different Types of Absolute Value Inequalities

Solve an absolute value inequality with a variable inside of the absolute value.	$\begin{gathered} \|x\|>12 \\ x>12 \quad x<-12 \end{gathered}$	Solve an absolute value inequality with a variable inside of the absolute value and addition on the outside of the absolute value.	$\begin{gathered} \|x\|+4 \leq 9 \\ \|x\| \leq 5 \\ x \leq 5 \quad x \geq-5 \end{gathered}$
Solve an absolute value inequality with a binomial in the absolute value.	$\begin{array}{rlr} & \|x+5\| & >7 \\ x+5>7 & x+5<-7 \\ x>2 & x & <-12 \end{array}$	Solve an absolute value inequality with a binomial in the absolute value and subtraction on the outside of the absolute value.	$\begin{array}{cc} \|x-2\|-8>-2 \\ \|x-2\|>6 \\ x-2>6 & x-2<-6 \\ x>8 & x<-4 \end{array}$
Solve an absolute value inequality with division inside of the absolute value.	$\begin{array}{cc} & \left\|\frac{x}{3}\right\| \leq 8 \\ \frac{x}{3}>8 & \frac{x}{3}<-8 \\ 3 \cdot \frac{x}{3}>8 \cdot 3 & 3 \cdot \frac{x}{3}<-8 \cdot 3 \\ x>24 & x<-24 \end{array}$	Solve an absolute value inequality with a variable inside of the absolute value and multiplication and addition on the outside of the absolute value.	$\begin{gathered} 3\|x+1\|+4 \geq 1 \\ 3\|x+1\| \geq-3 \\ \|x+1\| \geq-1 \\ x+1 \geq-1 \quad x+1 \leq 1 \\ x \geq-2 \quad x \leq 0 \end{gathered}$ But, neither of these solutions work when you check your answers so there is no solution.

What is a relation?
What is a function?
Substituting Values in the Function
Replace the x-value with the given number and simplify the expression.

Write your function here.

Substitute a negative integer into your function and simplify.

Substitute a positive integer into your function and simplify.

Substitute a rational number into your function and simplify.

Substitute a zero into your function and simplify.

Organizing Values of a Function Using a Table

Substitute the x-values into the function and simplify. Put your final answers in the table.

$f(x)=$		
x		$f(x)$
-5		
-2		
$-I$		
0		
I		
2		
5		
c		

What is a relation? A set of ordered pairs.

Give an example.
$(1,2),(-3,4),(7,9)(8,9)$

What is a function?

A relation in which exactly one element of the range is paired with each element of the domain.

Substituting Values in the Function
Replace the x-value with the given number and simplify the expression.
Write your function here.

$$
f(x)=3 x+18
$$

Substitute a negative integer into your function and simplify.

$$
\begin{gathered}
f(-2)=3(-2)+18 \\
f(-2)=-6+18 \\
f(-2)=12
\end{gathered}
$$

Substitute a positive integer into your function and simplify.

$$
\begin{gathered}
f(4)=3(4)+18 \\
f(4)=12+18 \\
f(4)=30
\end{gathered}
$$

Substitute a rational number into your function and simplify.

$$
\begin{gathered}
f\left(\frac{1}{3}\right)=3\left(\frac{1}{3}\right)+18 \\
f\left(\frac{1}{3}\right)=1+18 \\
f\left(\frac{1}{3}\right)=19
\end{gathered}
$$

Substitute a zero into your function and simplify.

$$
\begin{gathered}
f(0)=3(0)+18 \\
f(0)=0+18 \\
f(0)=18
\end{gathered}
$$

Organizing Values of a Function Using a Table

Substitute the x-values into the function and simplify. Put your final answers in the table.

$f(x)=x^{2}-2$		
x	$x^{2}-2$	$f(x)$
-5	$(-5)^{2}-2$	23
-2	$(-2)^{2}-2$	2
$-I$	$(-1)^{2}-2$	-1
0	$(0)^{2}-2$	-2
I	$(1)^{2}-2$	-1
2	$(2)^{2}-2$	2
5	$(5)^{2}-2$	23
c	$(c)^{2}-2$	$c^{2}-2$

Interactive Math Notebook Review Activities

Positive : Positive
Positive \div Negative
Negative - Positive
Negative \div Negative

Positive \times Positive	Positive \times Negative	Negative \times Positive	Negative \times Negative

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap and write your examples in the inside pages.
4. Insert your finished book into your math notebook.

Solving Inequalities

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Relations and Functions

Functions
 Define and give an example.

Relations

Define and give an example.

1. Cut along the bold lines and fold along the dotted lines.
2. Write your examples inside of the folds.
3. Insert your finished matchbook into your math notebook.

Solving Absolute Value Equations

Step I: Write your equation.

Step 2: Simplify the absolute value equation so that the absolute value is on one side of the equation and everything else is on the other side of the equation.

Step 3: First, set the expression that is inside of your absolute value equal to what is on the other side of the equation. Then, set the expression that is inside of your absolute value equal to the opposite of what is on the other side of the equation.

Solve each equation.

Solving Absolute Value Inequalities

Step I: Write your inequality.

Step 2: Simplify the absolute value inequality so that the absolute value is on one side of the inequality sign and everything else is on the other side of the inequality sign.

Step 3: First, rewrite the inequality just as it its without the absolute value symbols. Then, rewrite the inequality without the absolute value symbols, but this time, flip the inequality symbol and change the number that is on the opposite side of the inequality to its opposite. Solve each inequality.

Relations and Functions

Solving Absolute Value
Equations

Solving Absolute Value Inequalities

INB SAMPLES

Please be sure to visit our store for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

A special thank you to the following for providing quality borders, fonts, clip art, ete.

COPYRIGHT INFORMATION

©2015 Apples and Bananas

