Geometry SOL Practice
Topic \#2: Coordinate Formulas
Notes
Given: the coordinates of two points, determine the

- slope of containing the two points
- midpoint of the segment joining the two points
- the distance between the two points

Slopes: Perpendicular Lines have opposite reciprocal slopes.

$$
\begin{aligned}
& \text { ex: } \frac{1}{2}+-\frac{2}{1} \\
& \text { ex: }-\frac{3}{4}+\frac{4}{3}
\end{aligned}
$$

Geometry SOL Practice

Topic \#3: Angles (general)

Notes

Angles are measured as a fractional amount of a full circle - $\mathbf{3 6 0}{ }^{\circ}$

Terms:

- Complementary: Two angles whose sum is 90°
- Supplementary: Two angles whose sum is $\mathbf{1 8 0}{ }^{\circ}$

Angles form by Intersecting Lines:

- Vertical (opposite) Angles are Congruent.
- $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$
- Adjacent Angles are Supplementary.
- $m \angle 1+m \angle 2=180^{\circ}$
- $m \angle 2+m \angle 3=180^{\circ}$
- Ect.

Triangles:

- The sum of the angles of a triangle is $\mathbf{1 8 0}^{\circ}$.

$$
\text { - } m \angle 1+m \angle 2+m \angle 3=180^{\circ}
$$

Also: $m \angle 3+m \angle 4=180^{\circ}$

- Isosceles Triangles - base angles are congruent.
- $\angle 5 \cong \angle 6$

Geometry SOL Practice
 Topic \#4: Angles with Parallel Lines
 Notes

When parallel lines \boldsymbol{a} and $\boldsymbol{b}(\boldsymbol{a} \| \boldsymbol{b})$ are intersected by a transversal line \boldsymbol{t}, eight angles are formed. These eight angles are grouped into two clusters: angles 1-4 (top cluster) and angles 5-8 (bottom cluster). The rules and vocabulary of angles with parallel lines are based on pairs of angles: one from the top cluster and one from the bottom cluster.
Note: Any two angles chosen are either \cong or supplementary (sum is 180°).

Corresponding (\cong) - angles in the same relative position in each cluster
Example: $\angle 1$: upper left of top cluster
$\angle 5$: upper left of bottom cluster
Alternate Interior (\cong) - angles between the parallel lines and on different sides of the transversal.
Example: $\angle 4$: left interior of top cluster
$\angle 6$: right interior of bottom cluster

Alternate Exterior (\cong) - angles outside of the parallel lines and on different sides of the transversal.
Example: $\angle 2$: right exterior of top cluster
$\angle 8$: left exterior of bottom cluster

Consecutive Interior (180°) - angles between
the parallel lines and on the same side of the transversal.
Example: $\angle 4$: left interior of top cluster
$\angle 5$: left interior of bottom cluster

Slopes: Parallel Lines have equal slopes. $\mathrm{A}=(-2,2), \mathrm{B}=(2,3), \mathrm{C}=(-2,-2), \mathrm{D}=(2,-1)$

Slope of $\overleftrightarrow{A B}=\frac{(2)-(3)}{(-2)-(2)}=\frac{1}{4}$
Slope of $\overrightarrow{C D}=\frac{(-2)-(-1)}{(-2)-(2)}=\frac{1}{4}$

exterior bottom cluster

Geometry SOL Practice

Topic \#1: Logic

Notes

Conditional Statements are sentences in if - then form.

form	generalization	example
Original	If P , then Q.	If it's a dog, then it's a mammal.
Converse	If Q, then P.	If it's a mammal, then it's a dog.
Inverse	If \sim P , then $\sim \mathrm{Q}$.	If it's not a dog, then it's not a mammal.
Contrapositive	If $\sim \mathrm{Q}$, then \sim P.	If it's not a mammal, then it's not a dog.

Venn Diagrams are conditional statements in visual form.
If \mathbf{P}, then \mathbf{Q}.

If it's a dog, then it's a mammal.

Logic

Law of Syllagism is the transitive property using conditional statements.

	generalization	example
Given	If \mathbf{P}, then \mathbf{Q}. If \mathbf{Q}, then \mathbf{R}.	If it's a dog, then it's a mammal. If it's a mammal, then it is warm-blooded.
Conclusion	If \mathbf{P}, then \mathbf{R}.	If it's a dog, then it's warm-blooded.

Law of Detachment

	generalization	example
Given	If \mathbf{P}, then \mathbf{Q}. An example of \mathbf{P}.	If it's a dog, then it's a mammal. Spot is a dog.
Conclusion	The example applies to \mathbf{Q}.	Spot is a mammal.

Geometry SOL Practice
Topic \#7: Triangle Inequalities
Notes
I. Given 3 segment lengths, will they make a triangle?

Generalization
$a+b>c$
$a+c>b$
$b+c>a$

II. Given 2 sides of a triangle, what is the range of the third side?

Example

Example

$a+b>c$
Given: side 1 : 11 in
$a+c>b$

$$
\text { side } 2=15 \text { in }
$$

$b+c>a$
\qquad
III. Given the sides of a triangle, list the angles in order of size.

Given the angles of a triangle, list the sides in order of size.

Geometry SOL Practice
 Topic \#6: Congruent Triangles
 Notes

A triangle has six parts -3 sides and 3 angles.

Note:

| Reflexive Side - If two triangles share a side, |
| :--- | :--- |
| then that side is to be marked as a congruent part. |
| $\overline{A D}$ of $\triangle A D B$ is \cong to $\overline{A D}$ of $\triangle A D C$ |
| $\qquad \overline{A D} \cong \overline{A D}$ |

Steps:

1. Mark the Given information.
2. Mark the Reflexive Side or Vertical Angles (if they are relevant).
3. Choose a method based on these markings.

Hint: If the triangles overlap, redraw them as separate triangles and then follow the steps.

Prove: $\triangle A D B \cong \triangle B C A$

$$
\text { rive. } \triangle m u \approx=0
$$

Exanple:

Geometry SOL Practice
 Topic \#10: Right Triangles
 Notes

I. Pythagorean Theorem

Generalization	Example
	$8^{2}+x^{2}=18^{2}$ $64+x^{2}=324$ $x^{2}=260$ $x=\sqrt{260}$ $x \approx 16.12$

II. Trigonometry

Step 2:
Labei the sides.
(pp. adj. / hyp.)

Step 3: Select a Trig. Ratio.
($\sin / \cos / \tan$)
Step 4:
$\sin . \angle=\frac{\text { Opp. }}{\text { Hyp. }}$

Put the \#s and
Step 5:
$\operatorname{Sin} .25=\frac{x}{12}$

Solve.

$$
x=5.07
$$

III. Special Right Triangles (optional short cut)

$30^{\circ}-60^{\circ}-90^{\circ}$

