Geometry SOL Practice Topic #2: Coordinate Formulas Notes

Given: the coordinates of two points, determine the

- slope of containing the two points
- midpoint of the segment joining the two points
- the **distance** between the two points

Slopes: Perpendicular Lines have opposite reciprocal slopes. ex: $\frac{1}{2}$ + - $\frac{2}{1}$ ex: $-\frac{3}{4}$ + $\frac{4}{3}$

Geometry SOL Practice Topic #3: Angles (general) Notes

Angles are measured as a fractional amount of a full circle - 360°

Terms:

- *Complementary*: Two angles whose sum is 90°
- *Supplementary*: Two angles whose sum is 180°

Angles form by Intersecting Lines:

- Vertical (opposite) Angles are Congruent.
 ∠1 ≅ ∠3, ∠2 ≅ ∠4
- Adjacent Angles are Supplementary.
 - $\circ \quad m \angle 1 + m \angle 2 = 180^{\circ}$
 - $\circ \quad m \angle 2 + m \angle 3 = 180^{\circ}$
 - o Ect.

A 4 Q 2 D 3 C

Triangles:

- The sum of the angles of a triangle is **180°**.
 - $\circ \quad m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$

Also: m23+m24 = 180°

Isosceles Triangles – base angles are congruent.

 ∠5 ≅ ∠6

Geometry SOL Practice Topic #4: Angles with Parallel Lines Notes

When parallel lines a and b ($a \parallel b$) are intersected by a transversal line t, eight angles are formed. These eight angles are grouped into two clusters: angles 1-4 (top cluster) and angles 5-8 (bottom cluster). The rules and vocabulary of angles with parallel lines are based on pairs of angles: one from the top cluster and one from the bottom cluster.

Note: Any two angles chosen are either \cong or supplementary (sum is 180°).

Corresponding (\cong) – angles in the same relative position in each cluster Example: $\angle 1$: upper left of top cluster $\angle 5$: upper left of bottom cluster Alternate Interior (\cong) – angles between the h parallel lines and on different sides of the transversal. Example: $\angle 4$: left interior of top cluster $\angle 6$: right interior of bottom cluster exterior top cluster Alternate Exterior (\cong) – angles outside of the parallel lines and on different sides of the transversal. Example: $\angle 2$: right exterior of top cluster interior interior $\angle 8$: left exterior of bottom cluster **Consecutive Interior** (180°) – angles between 8 the parallel lines and on the same side of the transversal. Example: $\angle 4$: left interior of top cluster exterior bottom cluster $\angle 5$: left interior of bottom cluster

Slopes: Parallel Lines have *equal* slopes. A = (-2, 2), B = (2,3), C = (-2,-2), D = (2,-1)

Slope of $\overrightarrow{AB} = \frac{(2) - (3)}{(-2) - (2)} = \frac{1}{4}$

Slope of
$$\overrightarrow{CD} = \frac{(-2) - (-1)}{(-2) - (2)} = \frac{1}{4}$$

Geometry SOL Practice Topic #1: Logic Notes

Conditional Statements are sentences in if – then form.

form	generalization	example
Original	If P, then Q.	If it's a dog, then it's a mammal.
Converse	If Q, then P.	If it's a mammal, then it's a dog.
Inverse	If $\sim P$, then $\sim Q$.	If it's <i>not</i> a dog, then it's <i>not</i> a mammal.
Contrapositive	If $\sim Q$, then $\sim P$.	If it's <i>not</i> a mammal, then it's <i>not</i> a dog.

Venn Diagrams are conditional statements in visual form.

If **P**, then **Q**.

If it's a dog, then it's a mammal.

Logic

Law of Syllagism is the transitive property using conditional statements.

	generalization	example
Given	If P , then Q .	If it's a dog, then it's a mammal.
	If Q , then R .	If it's a mammal, then it is warm-blooded.
Conclusion	If P , then R .	If it's a dog, then it's warm-blooded.

Law of Detachment

	generalization	example
Given	If P , then Q .	If it's a dog, then it's a mammal.
	An example of P .	Spot is a dog.
Conclusion	The example applies to \mathbf{Q} .	Spot is a mammal.

Geometry SOL Practice Topic #7: Triangle Inequalities Notes

III. Given the sides of a triangle, list the angles in order of size. Given the angles of a triangle, list the sides in order of size.

Generalization	Example
Use the chart!	Given: $m \cdot B : 67^{\circ} + m \cdot C : 40^{\circ}$ List the sides in order from shortest to longest. A° $B \xrightarrow{(1)^{\circ}} 40^{\circ} C$ $B \xrightarrow{(1)^{\circ}} 40^{\circ} C$ $A \xrightarrow{(1)^{\circ}} A \xrightarrow{(1)^{\circ}} A$
	$\begin{array}{c} X + 67440 = 180 \\ X + 107 = 180 \\ \underline{-107 - 107} \\ X = 73^{\circ} \end{array}$

Geometry SOL Practice Topic #6: Congruent Triangles Notes

A triangle has six parts -3 sides and 3 angles. Between any two sides is an angle. Between any two angles is a side.

Methods: If the two	triangles have t	he following markings.	then choose that method.
The other of the the the	Chicking to her to the	ne rono nang manago,	then encode that method.

Side, Side, Side All 3 sides congruent	Side, Angle, Side Two sides congruent and the angle between them.	Angle, Side, Angle Two angles congruent and the side between them.	Angle, Side, Angle Two angles congruent and the side <i>not</i> between them.	Hypotenuse Leg
Side Side	Angle Side	Angle Side Angle	Angle	right as)

Note:

Reflexive Side – If two triangles share a side, then that side is to be marked as a congruent part. \overline{AD} of $\triangle ADB$ is \cong to \overline{AD} of $\triangle ADC$

$$\overline{AD} \simeq \overline{AD}$$

Vertical Angles – If two triangles are formed by intersecting segments, then the vertical angles belonging to the triangles are to be marked.

$$\angle ACB \cong \angle ECL$$

Steps:

- 1. Mark the Given information.
- 2. Mark the Reflexive Side or Vertical Angles (if they are relevant).
- 3. Choose a method based on these markings.

Hint: If the triangles overlap, redraw them as separate triangles and then follow the steps.

Geometry SOL Practice Topic #10: Right Triangles Notes

I. Pythagorean Theorem

II. Trigonometry

III. Special Right Triangles (optional short cut)

