Square Roots and

Quadratic Functions

 Interactive Math Notebook Activities and Scaffolded Notes- Square Numbers and Square Roots
- Square and Square Root Review with Whole Numbers
- Square and Square Root Review with Rational Numbers - What is an irrational number?
- Solving Quadratic Equations Without Factoring (Example I) Solving Quadratic Equations without Factoring (Example 2) - Finding the Square Roots of Monomials - Rules for Simplifying Square Roots
- Square Roots in Simplest Radical Form
- Square Roots in Simplest Radical Form with Fractions
- What does it mean to complete the square?
- Steps for Completing the Square
- Solving a Quadratic Equation by Completing the Square - Solving a Quadratic Equation Using the Quadratic Formula
- Finding the Coordinates for the Graph of a Quadratic Function
- Graphing a Quadratic Function

Scaffolded Notes

What is a square number?

What is a square root?

Show it on a square with numbers.

Show it on a square with variables.

Show it on a square with variables.

Show it on a square with a binomial.

Show it on a square with numbers.

Square and Square Root Review With Whole Numbers

$1^{2}=1$	$\sqrt{1}=1$
$2^{2}=4$	$\sqrt{4}=2$
$3^{2}=$	$\sqrt{ }=$
$4^{2}=$	$\sqrt{ }=$
$5^{2}=$	$\sqrt{ }=$
$6^{2}=$	$\sqrt{ }=$
$7^{2}=$	$\sqrt{ }=$
$8^{2}=$	$\sqrt{ }=$
$9^{2}=$	$\sqrt{ }=$
$10^{2}=$	$\sqrt{ }=$

Square and Square Root Review With Rational Numbers

$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$	$\sqrt{\frac{1}{4}}=\frac{1}{2}$
$\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$	$\sqrt{\frac{4}{9}}=-$
$\left(\frac{3}{4}\right)^{2}=-$	$\sqrt{-}=$
$\left(\frac{4}{5}\right)^{2}=-$	$\sqrt{-}=$

What is a square number?

A number that can be expressed as the square of a factor.

What is a square root?
One of the two equal factors of a number.

Show it on a square with

Square Number $=25$
numbers.
Show it on a square with

Square Number $=25$
Show it on a square witt variables. x
x

Square Number $=x^{2}$

Show it on a square with variables.
The square root of 25 is 5 .

Square and Square Root Review With Whole Numbers

$1^{2}=1$	$\sqrt{1}=1$
$2^{2}=4$	$\sqrt{4}=2$
$3^{2}=9$	$\sqrt{9}=3$
$4^{2}=16$	$\sqrt{16}=4$
$5^{2}=25$	$\sqrt{25}=5$
$6^{2}=36$	$\sqrt{36}=6$
$7^{2}=49$	$\sqrt{49}=7$
$8^{2}=64$	$\sqrt{64}=8$
$9^{2}=81$	$\sqrt{81}=9$
$10^{2}=100$	$\sqrt{100}=10$

Square and Square Root Review With Rational Numbers

$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$	$\sqrt{\frac{1}{4}}=\frac{1}{2}$
$\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$	$\sqrt{\frac{4}{9}}=\frac{2}{3}$
$\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$	$\sqrt{\frac{9}{16}}=\frac{3}{4}$
$\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$	$\sqrt{\frac{16}{25}}=\frac{4}{5}$

Give some examples of whole number square roots that simplify to irrational numbers?

Give some examples of rational number square roots that simplify to irrational numbers?

Solving Quadratic Equations without Factoring

You can use this method when you have a second degree term (i.e. $4 x^{2}$) and a zero degree term (i.e. 28).

Step I: Get your zero degree term on one side of the equation, and your second degree term on the other.

Step 2: If your second degree term has a coefficient, get rid of it using the multiplication or division principle.

Step 3: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)

Step 4: Solve for the variable.

Solving Quadratic Equations without Factoring

You can use this method when you have a squared binomial (i..e. $(x+3)^{2}$) and a zero degree term (i.e. 50).

Step I: Get your zero degree term on one side of the equation, and your squared binomial term on the other.

Step 2: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)
Step 3: Solve for the variable.

Any number that can be written as a $\pi, \sqrt{2}, \sqrt{3}$ non-repeating,
non-terminating decimal.

Give some examples of whole number square roots that simplify to irrational numbers?

$$
\sqrt{2}, \sqrt{3}
$$

Give some examples of rational number square roots that simplify to irrational numbers?

$$
\sqrt{\frac{2}{5}}, \sqrt{\frac{1}{2}}
$$

Solving Quadratic Equations without Factoring

You can use this method when you have a second degree term (i.e. $4 x^{2}$) and a zero de.gree term (i.e. 28).
Step I: Get your zero degree term on one side of the equation, and your second degree term on the other.

Step 2: If your second degree term has a coefficient, get rid of it using the multiplication or division principle. Step 3: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)
Step 4: Solve for the $\quad x \approx 2.646 \quad x \approx-2.646$ variable.

Solving Quadratic Equations without Factoring

You can use this method when you have a squared binomial (i.e. $(x+3)^{2}$) and a zero degree term (i.e. 50).

| Step I: Get your zero | $(x-5)^{2}=10$ |
| :--- | :--- | degree term on one side of the equation, and your squared

binomial term on the other.

Step 2: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)	$\begin{aligned} & x-5=\sqrt{10} \\ & x=5+\sqrt{10} \end{aligned}$	$\begin{aligned} & x-5=-\sqrt{10} \\ & x=5-\sqrt{10} \end{aligned}$
Step 3: Solve for the variable.	$x \approx 8.162$	$x \approx 1.838$

Finding the Square Roots of Monomials

$$
\sqrt{121 x^{2}}
$$

$$
\sqrt{49 x^{6} y^{4}}
$$

Rules for Simplifying Square Roots

Product Rule How does the product rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.
Quotient Rule How does the product rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.
Addition Rule How does the addition rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.
Subtraction Rule How dees the subtraction rule help	Give an example with variables.	Give an example with numbers.

How does the subtraction rule help us when simplifying square roots?

Finding the Square Roots of Monomials

$\sqrt{x^{10}}$
$\sqrt{x x x x x x x x x x}$
$\sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}}$
$x x x x x$
x^{5}
$\sqrt{121 x^{2}}$
$\sqrt{11 \cdot 11 x x}$
$\sqrt{11^{2}} \sqrt{x^{2}}$
$11 x^{2}$
$\sqrt{49 x^{6} y^{4}}$
$\sqrt{7 \cdot 7 x x x x x x y y y y}$
$\sqrt{7^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{y^{2}} \sqrt{y^{2}}$
$7 x x x y y$
$7 x^{3} y^{2}$

Rules for Simplifying Square Roots

Product Rule

How does the product rule help us when simplifying square roots? It allows you to split terms into their factors so that you can pull factor pairs out of the radical.

Quotient Rule

How does the product rule help us when simplifying square roots? It allows you to factor the terms in your numerator and denominator separately so that you can pull factor pairs out of the two parts separately.

Addition Rule

How does the addition rule help us when simplifying square roots? It allows you to add the coefficients of radicals if they are like radical terms.

Subtraction Rule How does the subtraction rule help us when simplifying square roots?

It allows you to subtract the coefficients of radicals if they are like radical terms.

Give an example with variables.

$$
\begin{gathered}
\sqrt{x^{10} y^{4}} \\
\sqrt{x x x x x x x x x x y y y y} \\
\sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x^{2}} \sqrt{y^{2}} \sqrt{y^{2}} \\
x x x x x y y y \\
x^{5} y^{2}
\end{gathered}
$$

Give an example with variables.

$$
\begin{gathered}
\sqrt{\frac{x^{2} y^{6}}{z^{10}}} \\
\sqrt{\frac{x x y y y y y}{z z z z z z z z z}} \\
\sqrt{x^{2}} \sqrt{y^{2}} \sqrt{y^{2}} \sqrt{y^{2}} \\
\sqrt{z^{2}} \sqrt{z^{2}} \sqrt{\sqrt{z}^{2}} \sqrt{z^{2}} \sqrt{z^{2}} \\
\frac{x y y y}{z z z z z} \\
\frac{x y^{3}}{z^{5}}
\end{gathered}
$$

Give an example with variables.

$$
\begin{aligned}
& a \sqrt{x}+b \sqrt{x} \\
& (a+b) \sqrt{x}
\end{aligned}
$$

Give an example with variables.

$$
\begin{aligned}
& a \sqrt{x}-b \sqrt{x} \\
& (a-b) \sqrt{x}
\end{aligned}
$$

Give an example with numbers.
$\sqrt{108}$
$\sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3}$

$$
\sqrt{2^{2}} \sqrt{3^{2}} \sqrt{3}
$$

$$
2 \cdot 3 \sqrt{3}
$$

$6 \sqrt{3}$
Give an example with numbers.

Give an example with numbers.

$$
\begin{gathered}
2 \sqrt{3}+7 \sqrt{3} \\
(2+7) \sqrt{3} \\
9 \sqrt{3}
\end{gathered}
$$

Give an example with numbers.

$$
\begin{gathered}
9 \sqrt{2}-6 \sqrt{2} \\
(9-6) \sqrt{2} \\
3 \sqrt{2}
\end{gathered}
$$

Square Roots in Simplest Radical Form

Step I: Factor the term that is inside of your radical.

Step 2: Rewrite as many of the factors as you can as square terms.

Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.

Step 4: Simplify.

Square Roots in Simplest Radical Form With Fractions	Number	Variable	Term with Numbers and Variables
Step I: Factor the term in your numerator and factor the term in your denominator.			
Step 2: Rewrite as many of the factors as you can as square terms.			
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.			
Step 4: If you still have a square root in your denominator you will need to rationalize the denominator.			
Step 5: Simplify.			

Square Roots in Simplest Radical Form	Number	Variable	Term with Numbers and Variables
Step I: Factor the term that is inside of your radical	$\frac{\sqrt{500}}{\sqrt{2 \cdot 2 \cdot 5 \cdot 5 \cdot 5}}$	$\frac{\sqrt{x y^{4} z^{5}}}{\sqrt{x y y y y z z z z z}}$	$\frac{\sqrt{300 x y^{4} z^{6}}}{\sqrt{2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 x y y y z z z z z}}$
Step 2: Rewrite as many of the factors as you can as square terms.	$\sqrt{2^{2} \cdot 5^{2 \cdot 5}}$	$\sqrt{x y^{2} y^{2} z^{2} z^{2} z}$	$\sqrt{2^{2} \cdot 3 \cdot 5^{2} x y^{2} y^{2} z^{2} z^{2} z^{2}}$
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.	$\begin{gathered} \sqrt{2^{2}} \sqrt{5^{2}} \sqrt{5} \\ 2 \cdot 5 \sqrt{5} \end{gathered}$	$\begin{gathered} \sqrt{y^{2}} \sqrt{y^{2}} \sqrt{z^{2}} \sqrt{z^{2}} \sqrt{x z} \\ y y z z \sqrt{x z} \end{gathered}$	$\begin{gathered} \sqrt{2^{2}} \sqrt{5^{2}} \sqrt{y^{2}} \sqrt{y^{2}} \sqrt{z^{2}} \sqrt{z^{2}} \sqrt{z^{2}} \sqrt{3 x} \\ 2 \cdot 5 y y z z \sqrt{3 x} \end{gathered}$
Step 4: Simplify.	$10 \sqrt{5}$	$y^{2} z^{2} \sqrt{x z}$	$10 y^{2} z^{2} \sqrt{3 x}$

Square Roots in Simplest Radical Form With Fractions	Number	Variable	Term with Numbers and Variables
Step I: Factor the term in your numerator and factor the term in your denominator.	$\begin{gathered} \sqrt{\frac{125}{48}} \\ \frac{\sqrt{5 \cdot 5 \cdot 5}}{\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}} \end{gathered}$	$\begin{aligned} & \sqrt{\frac{x^{3} y^{8}}{z^{3}}} \\ & \sqrt{\frac{x x x y y}{z z z}} \end{aligned}$	$\frac{\sqrt{\frac{225 x^{2}}{y z^{2}}}}{\sqrt{\frac{3 \cdot 3 \cdot 5 \cdot 5 x}{y / z z}}}$
Step 2: Rewrite as many of the factors as you can as square terms.	$\frac{\sqrt{5^{2}} \sqrt{5}}{\sqrt{2^{2}} \sqrt{2^{2}} \sqrt{3}}$	$\frac{\sqrt{x^{2}} \sqrt{x} \sqrt{y^{2}}}{\sqrt{z^{2}} \sqrt{z}}$	$\frac{\sqrt{3^{2}} \sqrt{5^{2}} \sqrt{x^{2}}}{\sqrt{y} \sqrt{z^{2}}}$
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radícals.	$\begin{aligned} & \frac{5 \sqrt{5}}{2 \cdot 2 \sqrt{3}} \\ & \frac{5 \sqrt{5}}{4 \sqrt{3}} \end{aligned}$	$\frac{x y \sqrt{x}}{z \sqrt{z}}$	$\begin{aligned} & \frac{3 \cdot 5 x}{z \sqrt{y}} \\ & \frac{15 x}{z \sqrt{y}} \end{aligned}$
Step 4: If you still have a square root in your denominator you will need to rationalize the denominator.	$\begin{aligned} & \frac{5 \sqrt{5}}{4 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\ & \frac{5 \sqrt{15}}{4 \cdot 3} \end{aligned}$	$\begin{gathered} \frac{x y \sqrt{x}}{z \sqrt{z}} \cdot \frac{\sqrt{z}}{\sqrt{z}} \\ \frac{x y \sqrt{x z}}{z z} \end{gathered}$	$\begin{aligned} & \frac{15 x}{z \sqrt{y}} \cdot \frac{\sqrt{y}}{\sqrt{y}} \\ & \frac{15 x \sqrt{y}}{z y} \end{aligned}$
Step 5: Simplify.	$\frac{5 \sqrt{15}}{12}$	$\frac{x y \sqrt{x z}}{z^{2}}$	$\frac{15 x \sqrt{y}}{z y}$

Steps for Completing the Square	Example with a Positive Coefficient on the X-Term	Example with a Ne.gative Coefficient on the X-Term
Step I: What is the coefficient of your x-term?		
Step 2: Take the number from step I, divide it by 2 and square the quotient.		

Step 3: Add the number from step 2 to your original expression.
Step 4: Factor your trinomial.

Step 5: Simplify.

What does it mean to complete the square?

You will be adding a number to an expression that will allow you to factor it into the square of a binomial.

Give an example on a square. A complete square with binomials has the same binomial on each side.

Give an example with an expression.

You would have to add 9 to the expression in order to have both sides equation the same binomial.
$\left.\begin{array}{c|c|c|}\hline \text { Steps for } \\ \text { Completing the } \\ \text { Square }\end{array} \quad \begin{array}{c}\text { Example with a Positive } \\ \text { Coefficient on the XTerm } \\ x^{2}+30 x\end{array} \begin{array}{c}\text { Example with a Negative } \\ \text { Coefficient on the XTerm } \\ x^{2}-6 x\end{array}\right]$

The coefficient of my xterm is -6.
Step 2: Take the number from step I, divide it by 2 and square the quotient.

The coefficient of my xterm is 30 .
Step 3: Add the number from step 2 to your original expression.

Step 4: Factor your trinomial.

$$
(x+15)(x+15)
$$

$$
(x-3)(x-3)
$$

Step 5: Simplify.

$$
\begin{array}{l|l}
(x+15)^{2} & (x-3)^{2}
\end{array}
$$

Solving a Quadratic Equation by Completing the Square	Example with a Positive Coefficient on the X-Term	Example with a Ne.gative Coefficient on the X-Term
Step i: Move the number term to one side of the equation and keep your x^{2} and x terms on the other.		
Step 2: Make sure that the coefficient on your x^{2} term is a I.		
Step 3: Find the number that will complete the square for the x^{2} and x terms.		
Step 4: Add the number from step 3 to both sides of the equation.		
Step 4: Factor your trinomial. Simplify.		
Step 6: Check your solutions.		
Step 5: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)		
Step		

Solving a Quadratic Equation by Completing the Square

Example with a Positive Coefficient on the X-Term $x^{2}+2 x-24=0$

Example with a Negative Coefficient on the X-Term $2 x^{2}-20 x-22=0$

Step I: Move the number term to one side of the equation and keep your x^{2} and x terms on the other.

Step 2: Make sure that the coefficient on your x^{2} term is a I.

$$
x^{2}+2 x=24
$$

$$
\frac{2 x^{2}}{2}-\frac{20 x}{2}=\frac{22}{2}
$$

$$
x^{2}-10 x=11
$$

Step 3: Find the number that will complete the square for the x^{2} and x terms.

> Solving a Quadratic Example I

> Example 2 Equation using the Quadratíc Formula

Step I: Rewrite your equation

 in standard form.$$
a x^{2}+b x+c=0
$$

Step 2: Locate your a, b, and c values.

Step 3: Substitute your a, b, and c values in the Quadratic Formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Step 4: Simplify the numerator. Simplify the denominator.

Step 5: Split your equation in two. Solve both.

Step 6: Check your solutions.

Solving a Quadratic Equation using the Quadratic Formula

$$
x^{2}-3 x+2=0
$$

Example 2

$$
3 x^{2}+10 x+5=0
$$

Step I: Rewrite your equation in standard form.

Example I

$$
\begin{array}{l|l}
x^{2}-3 x+2=0 & 3 x^{2}+10 x+5=0
\end{array}
$$

$$
a x^{2}+b x+c=0
$$

Step 2: Locate your a, b, and c values.

$$
\begin{gathered}
a=1 \\
b=-3 \\
c=2
\end{gathered}
$$

$$
a=3
$$

$$
b=10
$$

$$
c=5
$$

Step 3: Substitute your a, b, and c values in the Quadratic Formula.

$$
x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(2)}}{2(1)} \quad x=\frac{-(10) \pm \sqrt{(10)^{2}-4(3)(5)}}{2(3)}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Step 4: Simplify the numerator. Simplify the denominator.
Step 5: Split your equation in two. Solve both.

Step 6: Check your solutions.

$$
\begin{gathered}
(1)^{2}-3(1)+2=0 \\
0=0 \\
(2)^{2}-3(2)+2=0 \\
0=0
\end{gathered}
$$

Finding the Coordinates for the Graph of a Quadratic Function

x	$f(x)=\ldots$	$f(x)$	(x, y)

Graphing a Quadratic Function

Finding the Coordinates for the Graph of a Quadratic Function

x	$f(x)=x^{2}-2 x-3$	$f(x)$	(x, y)
-2	$(-2)^{2}-2(-2)-3$ $4+4-3=5$	5	$(-2,5)$
-1	$(-1)^{2}-2(-1)-3$ $1+2-3=0$	0	$(-1,0)$
0	$(0)^{2}-2(0)-3$ $0-0-3=-3$	-3	$(0,-3)$
1	$(1)^{2}-2(1)-3$ $1-2-3=-4$	-4	$(1,-4)$
2	$(2)^{2}-2(2)-3$ $4-4-3=-3$	-3	$(2,-3)$

Graphing a Quadratic Function

$f(x)=x^{2}-2 x-3$	
\mathbf{x}	$\mathrm{f}(\mathrm{x})$
-2	5
-1	0
0	-3
1	-4
2	-3

				10						
-10										

Interactive Math Notebook Review Activities

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a triangle flap book.
3. Flip up each flap and write your examples in the inside pages.
4. Insert your finished book into your math notebook.

Solving Quadratic Equations without Factoring

You can use this method when you have a second degree term and a zero degree term.

 puojas \downarrow لnok pub 'ualtonba aut jo apis

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Solving Quadratic Equations without Factoring

You can use this method when you have a squared binomial and a zero degree term.

\section*{'ə1qDIUDA OLt JOJ ONOS
 | $\stackrel{N}{0}$ |
| :---: |
| $\stackrel{\omega}{0}$ |}

(StJDd $\operatorname{\partial \nmid DJpdas~OM+~}$

 ajpnbs aut tho ןOدubD Ot JəpJO u!

 - . CdotS

-jauto aut uo maət |bluoung pajpnbs

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a petal flap book.
3. Glue the center of your petal book to your notebook page
4. Flip up each flap and write your examples directly in your math notebook.
5. Insert your finished book into your math notebook.

Square Roots in Simplest Radical Form

inside of the radicals．

 can as square terms．
 Rewrite as many of the factors as you
 ：乙 datS

Directions：
1．Cut along the bold lines and fold along the dotted lines．
2．Use a little bit of glue underneath the top flap to insert the flap book into your math notebook．
3．Flip up each flap and write your examples directly onto your math notebook page．

Directions：
1．Cut along the bold lines and fold along the dotted lines．
2．Use a little bit of glue underneath the top flap to insert the flap book into your math notebook．
3．Flip up each flap and write your examples directly onto your math notebook page．

Square Roots in Simplest Radical Form With Fractions

＇Ky！ldu！S ：S dotS

rationalize the denominator． Ot pąu｜I！M nok JO\＆buluouap anok ul tood ajphbs D aヘpY IIItS nok JI ：九 datS

 the factors inside of the radicals．
 ＇Suıat O．bphbs SD ups nok SD S」O＋OD」 your denominator．
 Step l：Factor the term in your

Solving a Quadratic Equation by Completing the Square
suautnos ano人 צəa૫ગ :9 dats
 sides of the equation.

Step 4: Add the number from step 3 to both

Step 3: Find the number that will complete
the square for the x^{2} and x terms.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap and write your definitions and examples in the inside pages.
4. Insert your finished book into your math notebook.

Please be sure to visit our store for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

A special thank you to the following for providing quality borders, fonts, clip art, ete.

COPYRIGHT INFORMATION

©2015 Apples and Bananas

