Ì		Ø
	Square Roots and	
X	Quadratic Functions	
	Interactive Math Notebook Activities and Scaffolded Notes	
$\left\{ \right\}$	 Square Numbers and Square Roots Square and Square Root Review with Whole Numbers Square and Square Root Review with Rational Numbers What is an irrational number? 	
	 Solving Quadratic Equations without Factoring (Example I) Solving Quadratic Equations without Factoring (Example 2) Finding the Square Roots of Monomials Rules for Simplifying Square Roots 	
\mathbf{x}	 Square Roots in Simplest Radical Form Square Roots in Simplest Radical Form with Fractions What does it mean to complete the square? Steps for Completing the Square 	
Ź	 Solving a Quadratic Equation by Completing the Square Solving a Quadratic Equation using the Quadratic Formula Finding the Coordinates for the Graph of a Quadratic Function 	
	• Graphing a Quadratic Function *Apples and Bananas*	

Scaffolded Notes

What is a square number?	What is a square root?	Square and Square Root Review With Whole Numbers			
		$1^2 = 1$	$\sqrt{1} = 1$		
		$2^2 = 4$	$\sqrt{4} = 2$		
		3 ² =	√		
		4 ² =	√ =		
Show it on a square with	Show it on a square with numbers.	$5^2 = $	√		
numbers.		$6^2 = $	√		
		$7^2 = $	√		
		8 ² =	√ =		
		9 ² =	√ =		
		$10^2 = _$	√ =		
Show it on a cauge with	Show it on a square with variables.				
variables.	Show it on a square with variables.	Square and Squa With Ration	are Root Review 1al Numbers		
variables.	Show it on a square with variables.	Square and Square With Ration $(\frac{1}{2})^2 = \frac{1}{4}$	are Root Review nal Numbers $\sqrt{\frac{1}{4}} = \frac{1}{2}$		
	Show it on a square with variables.	Square and Square With Ration $(\frac{1}{2})^2 = \frac{1}{4}$ $(\frac{2}{3})^2 = \frac{4}{9}$	are Root Review al Numbers $\sqrt{\frac{1}{4}} = \frac{1}{2}$ $\sqrt{\frac{4}{9}} =$		
Show it on a square with a binomial.	Show it on a square with variables.	Square and Square With Ration $(\frac{1}{2})^2 = \frac{1}{4}$ $(\frac{2}{3})^2 = \frac{4}{9}$ $(\frac{3}{4})^2 = -$	are Root Review al Numbers $\sqrt{\frac{1}{4}} = \frac{1}{2}$ $\sqrt{\frac{4}{9}} =$ $\sqrt{-} =$		
Show it on a square with a binomial.	Show it on a square with variables.	Square and Square With Ration $(\frac{1}{2})^2 = \frac{1}{4}$ $(\frac{2}{3})^2 = \frac{4}{9}$ $(\frac{3}{4})^2 = -$ $(\frac{4}{5})^2 = -$	are Root Review hal Numbers $\sqrt{\frac{1}{4}} = \frac{1}{2}$ $\sqrt{\frac{4}{9}} =$ $\sqrt{-} =$ $\sqrt{-} =$		

What is a square number?	What is a square root? One of the two equal	Square and Square Root Review With Whole Numbers		
expressed as the square of a factor.	factors of a number.	$1^2 = 1 \qquad \sqrt{1} = 1$		
		$2^2 = 4 \qquad \qquad \sqrt{4} = 2$		
		$3^2 = 9 \qquad \qquad \sqrt{9} = 3$		
		$4^2 = 16 \qquad \qquad \sqrt{16} = 4$		
Show it on a square with	Show it on a square with	$5^2 = 25$ $\sqrt{25} = 5$		
numbers.	numbers.	$6^2 = 36 \qquad \qquad \sqrt{36} = 6$		
		$7^2 = 49$ $\sqrt{49} = 7$		
5 25	5 25	$8^2 = 64$ $\sqrt{64} = 8$		
Square Number = 25	The square root of 25	$9^2 = 81$ $\sqrt{81} = 9$		
	is 5.	$10^2 = 100$ $\sqrt{100} = 10$		
Show it on a square with variables. X X X X X Square Number = x^2 Show it on a square with a binomial. X +3	Show it on a square with variables. X X x x^2 The square root of x^2 is x. Show it on a square with a binomial. X+3	Square and Square Root Review With Rational Numbers $\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}^2 = \frac{1}{4} \qquad \qquad \sqrt{\frac{1}{4}} = \frac{1}{2} \\ \begin{pmatrix} \frac{2}{3} \\ 2 \end{pmatrix}^2 = \frac{4}{9} \qquad \qquad \sqrt{\frac{4}{9}} = \frac{2}{3} \\ \begin{pmatrix} \frac{3}{4} \\ 2 \end{pmatrix}^2 = \frac{9}{16} \qquad \qquad 9 = 3 \\ \end{pmatrix}$		
X+3 $(x + 3)^2$ Square Number = $(x + 3)^2$	X+3 $(x + 3)^2$ The square root of $(x + 3)^2$ is (x+3).	$(\frac{4}{5})^2 = \frac{16}{25}$ $\sqrt{\frac{16}{16}} = \frac{4}{5}$ $\sqrt{\frac{16}{25}} = \frac{4}{5}$		

l number?	Give some examples of irrational numbers?
n irrationa	Give some examples of whole number square roots that simplify to irrational numbers?
What is a	Give some examples of rational number square roots that simplify to irrational numbers?

Solving Quadratic Equations without Factoring

You can use this method when you have a second degree term (i.e. $4x^2$) and a zero degree term (i.e. 28).

Step I: Get your zero					
degree term on one side of the equation, and your second degree term on the other.				Step I: Get your zero degree term on one side of the equation, and your squared binomial term on the	
Step 2: If your second degree term has a coefficient, get				other.	
rid of it using the Multiplication or division principle.				Step 2: Take the square root of both sides in order to	
Step 3: Take the square root of both sides in order to cancel out the square term. (This breaks the	3: Take the re root of both s in order to el out the square . (This breaks the tion into two		term. (This breaks the equation into two separate parts.)	cancel out the square term. (This breaks the equation into two separate parts.)	
separate parts.)				Step 3: Solve for the	
Step 4: Solve for the variable.				var.lante.	

Solving Quadratic Equations without Factoring

You can use this method when you have a squared binomial (i.e. $(x + 3)^2$) and a zero degree term (i.e. 50).

*Apples and Bananas

<u>ç</u> .		Give some examples of irrational numbers?
l number	Any number that can be written as a non-repeating,	$\pi,\sqrt{2},\sqrt{3}$
na	non-terminating	Give some examples of whole number square roots that simplify to irrational numbers?
n irratio	decimal.	$\sqrt{2},\sqrt{3}$
မ လ		Give some examples of rational number square roots that simplify to irrational numbers?
What i		$\sqrt{\frac{2}{5}}, \sqrt{\frac{1}{2}}$

Solving Quadratic Equations without Factoring

You can use this method when you have a second degree term (i.e. $4x^2$) and a zero degree term (i.e. 28).

Step I: Get your zero degree term on one side of the equation, and your second degree term on the other.	$\frac{2x^2-}{2x^2}$	14 = 0 = 14	Step I: Get your zero degree term on one side of the equation, and your squared binomial term on the other.
Step 2: If your second degree term has a coefficient, get rid of it using the multiplication or division principle.	$\frac{2x^2}{2}$ x^2	$=\frac{14}{2}$ $= 7$	Step 2: Take the square root of both sides in order to cancel out the square term (This breaks the
Step 3: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts)	$x = \sqrt{7}$	$x = -\sqrt{7}$	equation into two separate parts.) Step 3: Solve for the variable.
Step 4: Solve for the variable.	<i>x</i> ≈ 2.646	<i>x</i> ≈ −2.646	

Solving Quadratic Equations without Factoring

You can use this Method when you have a squared binomial (i.e. $(x + 3)^2$) and a zero degree term (i.e. 50).

		. ,
Step I: Get your zero degree term on one side of the equation, and your squared binomial term on the other.	(<i>x</i> – 5)	$p^2 = 10$
Step 2: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)	$\begin{aligned} x - 5 &= \sqrt{10} \\ x &= 5 + \sqrt{10} \end{aligned}$	$x - 5 = -\sqrt{10}$ $x = 5 - \sqrt{10}$
Step 3: Solve for the variable.	<i>x</i> ≈ 8.162	$x \approx 1.838$ *Apples and Bananas

	$\sqrt{x^{10}}$
Finding the Square Roots	$\sqrt{121x^2}$
of Monomials	$\sqrt{49x^6y^4}$

Rules for Simplifying Square Roots				
Product Rule How does the product rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.		
Quotient Rule How does the product rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.		
Addition Rule How does the addition rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.		
Subtraction Rule How does the subtraction rule help us when simplifying square roots?	Give an example with variables.	Give an example with numbers.		
		*Apples and Bananas		

Finding the	$\sqrt{\frac{\sqrt{x^{10}}}{\sqrt{xxxxxxxxxxx}}}} \\ \sqrt{\frac{\sqrt{x^2}\sqrt{x^2}\sqrt{x^2}\sqrt{x^2}}{\sqrt{x^2}\sqrt{x^2}\sqrt{x^2}}} \\ \frac{xxxxx}{x^5} \\ x^5$
Square Roots of Monomials	$\sqrt{\frac{121x^2}{\sqrt{11 \cdot 11xx}}}$ $\sqrt{\frac{11^2}{x^2}}$ $\frac{11x}{\sqrt{x^2}}$

Rules for Simplifying Square Roots				
Product Rule How does the product rule help us when simplifying square roots? It allows you to split terms into their factors so that you can pull factor pairs out of the radical.	Give an example with variables.	Give an example with numbers.		
Quotient Rule How does the product rule help us when simplifying square roots? It allows you to factor the terms in your numerator and denominator separately so that you can pull factor pairs out of the two parts separately.	Give an example with variables. $ \begin{array}{c} \sqrt{\frac{x^2y^6}{z^{10}}} \\ \sqrt{\frac{xxyyyyyy}{zzzzzzzzz}} \\ \frac{\sqrt{x^2}\sqrt{y^2}\sqrt{y^2}\sqrt{y^2}}{\sqrt{z^2}\sqrt{z^2}\sqrt{z^2}\sqrt{z^2}\sqrt{z^2}} \\ \frac{xyyy}{zzzzz} \\ \frac{xy^3}{z^5} \end{array} $	Give an example with numbers.		
Addition Rule How does the addition rule help us when simplifying square roots? It allows you to add the coefficients of radicals if they are like radical terms.	Give an example with variables. $a\sqrt{x} + b\sqrt{x}$ $(a + b)\sqrt{x}$	Give an example with numbers. $2\sqrt{3} + 7\sqrt{3}$ $(2+7)\sqrt{3}$ $9\sqrt{3}$		
Subtraction Rule How does the subtraction rule help us when simplifying square roots? It allows you to subtract the coefficients of radicals if they are like radical terms.	Give an example with variables. $a\sqrt{x} - b\sqrt{x}$ $(a - b)\sqrt{x}$	Give an example with numbers. $9\sqrt{2} - 6\sqrt{2}$ $(9 - 6)\sqrt{2}$ $3\sqrt{2}$ "Apples and Banamas"		

Square Roots in Simplest Radical Form	Number	Variable	Term with Numbers and Variables
Step I: Factor the term that is inside of your radical.			
Step 2: Rewrite as many of the factors as you can as square terms.			
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.			
Step 4: Simplify.			

Square Roots in Simplest Radical Form With Fractions	Number	Variable	Term with Numbers and Variables
Step I: Factor the term in your numerator and factor the term in your denominator.			
Step 2: Rewrite as many of the factors as you can as square terms.			
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.			
Step 4: If you still have a square root in your denominator you will need to rationalize the denominator.			
Step 5: Simplify.			*Apples and Bananas

Square Roots in Simplest Radical Form	Number	Variable	Term with Numbers and Variables
Step I: Factor the term that is inside of your radical.	$\frac{\sqrt{500}}{\sqrt{2\cdot 2\cdot 5\cdot 5\cdot 5}}$	$\frac{\sqrt{xy^4z^5}}{\sqrt{xyyyyzzzz}}$	$\frac{\sqrt{300xy^4z^6}}{\sqrt{2\cdot 2\cdot 3\cdot 5\cdot 5xyyyyzzzzz}}$
Step 2: Rewrite as many of the factors as you can as square terms.	$\sqrt{2^2 \cdot 5^2 \cdot 5}$	$\sqrt{xy^2y^2z^2z^2z}$	$\sqrt{2^2 \cdot 3 \cdot 5^2 x y^2 y^2 z^2 z^2 z^2}$
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.	$\frac{\sqrt{2^2}\sqrt{5^2}\sqrt{5}}{2\cdot 5\sqrt{5}}$	$\frac{\sqrt{y^2}\sqrt{y^2}\sqrt{z^2}\sqrt{z^2}\sqrt{xz}}{yyzz\sqrt{xz}}$	$\frac{\sqrt{2^2}\sqrt{5^2}\sqrt{y^2}\sqrt{y^2}\sqrt{z^2}\sqrt{z^2}\sqrt{z^2}\sqrt{3x}}{2\cdot 5yyzz\sqrt{3x}}$
Step 4: Simplify.	10√5	$y^2 z^2 \sqrt{xz}$	$10y^2z^2\sqrt{3x}$
Square Roots in Simplest Radical Form With Fractions	Number	Variable	Term with Numbers and Variables
Step I: Factor the term in your numerator and factor the term in your denominator.	$\sqrt{\frac{125}{48}}$ $\frac{\sqrt{5\cdot5\cdot5}}{\sqrt{2\cdot2\cdot2\cdot2\cdot3}}$	$\sqrt{\frac{x^3y^8}{z^3}}$ $\sqrt{\frac{xxxyy}{zzz}}$	$\sqrt{\frac{225x^2}{yz^2}}$ $\sqrt{\frac{3\cdot3\cdot5\cdot5xx}{yzz}}$
Step 2: Rewrite as many of the factors as you can as square terms.	$\frac{\sqrt{5^2}\sqrt{5}}{\sqrt{2^2}\sqrt{2^2}\sqrt{3}}$	$\frac{\sqrt{x^2}\sqrt{x}\sqrt{y^2}}{\sqrt{z^2}\sqrt{z}}$	$\frac{\sqrt{3^2}\sqrt{5^2}\sqrt{x^2}}{\sqrt{y}\sqrt{z^2}}$
Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.	$ \frac{5\sqrt{5}}{2 \cdot 2\sqrt{3}} \\ \frac{5\sqrt{5}}{4\sqrt{3}} $	$\frac{xy\sqrt{x}}{z\sqrt{z}}$	$\frac{3 \cdot 5x}{z\sqrt{y}}$ $\frac{15x}{z\sqrt{y}}$
Step 4: If you still have a square root in your denominator you will need to rationalize the denominator.	$ \frac{5\sqrt{5}}{4\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\ \frac{5\sqrt{15}}{4 \cdot 3} $	$\frac{xy\sqrt{x}}{z\sqrt{z}} \cdot \frac{\sqrt{z}}{\sqrt{z}}$ $\frac{xy\sqrt{xz}}{zz}$	$\frac{\frac{15x}{z\sqrt{y}} \cdot \frac{\sqrt{y}}{\sqrt{y}}}{\frac{15x\sqrt{y}}{zy}}$
Step 5: Simplify.	$\frac{5\sqrt{15}}{12}$	$\frac{xy\sqrt{xz}}{z^2}$	$\frac{15x\sqrt{y}}{zy}$

What does it mean to complete the square?	Give an example on a square.	Give an example with an expression.

Steps for Completing the Square	Example with a Positive Coefficient on the X-Term	Example with a Negative Coefficient on the X-Term
Step I: What is the coefficient of your x-term?		
Step 2: Take the number from step I, divide it by 2 and square the quotient.		
Step 3: Add the number from step 2 to your original expression.		
Step 4: Factor your trinomial.		
Step 5: Simplify.		
		*Apples and Bananas

Steps for Completing the Square	Example with a Positive Coefficient on the X-Term $x^2 + 30x$	Example with a Negative Coefficient on the X-Term $x^2 - 6x$
Step I: What is the coefficient of your x-term?	$x^2 + 30x$	$x^2 - 6x$
	The coefficient of my x-term is 30.	The coefficient of my x-term is -6.
Step 2: Take the number from step I, divide it by 2 and	$(\frac{30}{2})^2$	$(\frac{-6}{2})^2$
square the quotient.	15 ²	$(-3)^2$
	225	9
Step 3: Add the number from step 2 to your original expression.	$x^2 + 30x + 225$	$x^2 - 6x + 9$
Step 4: Factor your trinomial.	(x + 15)(x + 15)	(x-3)(x-3)
Step 5: Simplify.	$(x + 15)^2$	$(x-3)^2$ "Apples and Bananas"

Solving a Quadratic Equation by Completing the Square	Example with a Positive Coefficient on the X-Term	Example with a Negative Coefficient on the X-Term
Step I: Move the number term to one side of the equation and keep your x^2 and x terms on the other.		
Step 2: Make sure that the coefficient on your x^2 term is a I.		
Step 3: Find the number that will complete the square for the x^2 and x terms.		
Step 4: Add the number from step 3 to both sides of the equation.		
Step 4: Factor your trinomial. Simplify.		
Step 5: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)		
Step 6: Check your solutions.		
		"Apples and Bananas

Solving a Quadratic Equation by Completing the Square	Example with a Positive Coefficient on the X-Term $x^2 + 2x - 24 = 0$		Example with a Negati- Coefficient on the X-Te $2x^2 - 20x - 22 = 0$		
Step I: Move the number term to one side of the equation and keep your x^2 and x terms on the other.	$x^2 + 2x = 24$		$2x^2 - 2$	0x = 22	
Step 2: Make sure that the coefficient on your x^2 term is a I.	$x^2 + 2$	<i>x</i> = 24	$\frac{2x^2}{2} - \frac{20x}{2} = \frac{22}{2}$ $x^2 - 10x = 11$		
Step 3: Find the number that will complete the square for the x^2 and x terms.	$(\frac{2}{2})^2 = 1$		$(\frac{-10}{2})^2 = 25$		
Step 4: Add the number from step 3 to both sides of the equation.	$x^{2} + 2x + 1 = 24 + 1$ $x^{2} + 2x + 1 = 25$		$x^2 - 10x + 2$ $x^2 - 10x + 2$	25 = 11 + 25 + 25 = 36	
Step 4: Factor your trinomial. Simplify.	$(x+1)^2 = 25$		(x - 5)	$)^2 = 36$	
Step 5: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)	$x + 1 = \sqrt{25}$ $x + 1 = 5$ $x = 4$	$x + 1 = -\sqrt{25}$ $x + 1 = -5$ $x = -6$	$x - 5 = \sqrt{36}$ $x - 5 = 6$ $x = 11$	$\begin{aligned} x - 5 &= -\sqrt{36} \\ x - 5 &= -6 \\ x &= -1 \end{aligned}$	
Step 6: Check your solutions.	$(4)^{2}+2(4)-24 = 0$ 0 = 0 $(-6)^{2}+2(-6)-24 = 0$ 0 = 0		$2(11)^{2} - 20(242 - 220)0 =2(-1)^{2} - 20(2 + 20 -0 =$	$ \begin{array}{l} (11) - 22 = 0 \\ 0 - 22 = 0 \\ = 0 \\ (-1) - 22 = 0 \\ - 22 = 0 \\ = 0 \\ \end{array} $ *Apples and Banamas	

Solving a Quadratic Equation using the Quadratic Formula	Example I	Example 2
Step I: Rewrite your equation in standard form. $ax^2 + bx + c = 0$		
Step 2: Locate your a, b, and c values.	$\begin{array}{c} a = \underline{} \\ b = \underline{} \\ c = \underline{} \end{array}$	$\begin{array}{c} a = \underline{} \\ b = \underline{} \\ c = \underline{} \end{array}$
Step 3: Substitute your a, b, and c values in the Quadratic Formula. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Step 4: Simplify the numerator. Simplify the denominator.		
Step 5: Split your equation in two. Solve both.		
Step 6: Check your solutions.		*Apples and Bananas

Exap $x^2 - 3x$	Aple I + 2 = 0	Exap $3x^2 + 10$	1ple 2 x + 5 = 0
$x^2 - 3x + 2 = 0$		$3x^2 + 10$	x + 5 = 0
a = b = c =	= 1 3 = 2	a = b = c =	= 3 = 10 = 5
$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)}$		$x = \frac{-(10) \pm }{}$	$(10)^2 - 4(3)(5)$ 2(3)
$x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = \frac{3 \pm \sqrt{1}}{2}$ $x = \frac{3 \pm 1}{2}$		$x = \frac{-10 \pm x}{x} = \frac{-10 \pm x}{x}$	$\frac{\sqrt{100-60}}{\frac{6}{0\pm\sqrt{40}}}$
$x = \frac{3+1}{\frac{2}{4}}$ $x = \frac{4}{\frac{2}{2}}$ $x = 2$	$x = \frac{3-1}{\frac{2}{2}}$ $x = \frac{2}{\frac{2}{2}}$ $x = 1$	$x = \frac{-10 + \sqrt{40}}{6}$ $x \approx -0.613$	$x = \frac{-10 - \sqrt{40}}{6}$ $x \approx -2.721$
$(1)^{2}-3(1) + 2 = 0$ 0 = 0 $(2)^{2}-3(2) + 2 = 0$ 0 = 0		$3(-0.613)^{2} + 10$ 0 = 3(-2.721)^{2} + 10 0 =	(-0.613) + 5 = 0 = 0 (-2.721) + 5 = 0 = 0
	Exam $x^{2} - 3x$ $x^{2} - 3x$ $x^{2} - 3x$ $x^{2} - 3x$ $a = b = b = c = c = c = c = c = c = c = c$	Example I $x^{2} - 3x + 2 = 0$ $x^{2} - 3x + 2 = 0$ $x^{2} - 3x + 2 = 0$ $a = 1$ $b = -3$ $c = 2$ $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(2)}}{2(1)}$ $x = \frac{3 \pm \sqrt{1}}{2(1)}$ $x = \frac{3 \pm \sqrt{1}}{2(1)}$ $x = \frac{3 \pm \sqrt{1}}{2}$ $x = \frac{3 \pm \sqrt{1}}{2}$ $x = \frac{3 \pm \sqrt{1}}{2}$ $x = \frac{3 \pm 1}{2}$	Example I Example I $x^2 - 3x + 2 = 0$ $3x^2 + 10x^2$ $x^2 - 3x + 2 = 0$ $3x^2 + 10x^2$ $x^2 - 3x + 2 = 0$ $3x^2 + 10x^2$ $x = 1$ $b = -3$ $b = -3$ $c = 2$ $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)}$ $x = \frac{-(10) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)}$ $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)}$ $x = \frac{-(10) \pm \sqrt{(-3)^2 - 4(1)(2)}}{x}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2(1)}$ $x = \frac{-10 \pm \sqrt{9}}{x}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2(1)}$ $x = \frac{-10 \pm \sqrt{9}}{x}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = \frac{-10 \pm \sqrt{9}}{x}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = \frac{-10 \pm \sqrt{9}}{x}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = \frac{-10 \pm \sqrt{9}}{x}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = -10 \pm \sqrt{9}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = -10 \pm \sqrt{9}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = -10 \pm \sqrt{9}$ $x = \frac{3 \pm \sqrt{9 - 8}}{2}$ $x = -10 \pm \sqrt{9}$ $x = \frac{3 \pm 1}{2}$ $x = \frac{3 - 1}{2}$ $x = 2$ $x = 1$ $x = -0.613$ $(1)^2 - 3(1) + 2 = 0$ $3(-0.613)^2 + 10$ $3(-2.721)^2 + 10$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$

Finding the Coordinates for the Graph of a Quadratic Function

x	$f(x) = _$	f(x)	(x,y)

Graphing a Quadratic Function

|
 |
|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | _ |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

x	$f(x) = x^2 - 2x - 3$	f(x)	(<i>x</i> , <i>y</i>)
-2	$(-2)^2 - 2(-2) - 3$ 4 + 4 - 3 = 5	5	(-2,5)
-1	$(-1)^2 - 2(-1) - 3$ 1 + 2 - 3 = 0	0	(-1,0)
0	$(0)^2 - 2(0) - 3$ 0 - 0 - 3 = -3	-3	(0, -3)
1	$(1)^2 - 2(1) - 3$ 1 - 2 - 3 = -4	-4	(1, -4)
2	$(2)^2 - 2(2) - 3$ 4 - 4 - 3 = -3	-3	(2, -3)

Finding the Coordinates for the Graph of a Quadratic Function

Graphing a Quadratic Function

$f(x) = x^2$	$x^{2}-2x-3$
x	f(x)
-2	5
-1	0
0	-3
1	-4
2	-3

Interactive Math Notebook Review Activities

Directions:

- Cut along the bold lines and fold along the dotted lines.
- Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
- Flip up each flap and write your examples directly onto your math notebook page.

Directions:

- Cut along the bold lines and fold along the dotted lines.
- When you fold along the dotted line you will have a petal flap book.
- Glue the center of your petal book to your notebook page
- Flip up each flap and write your examples directly in your math notebook.
- Insert your finished book into your math notebook.

Square	Square Roots in Simplest Radical Form					
Step 4: Simplify.	Step 3: Let the square root cancel the square terms and keep the rest of the factors inside of the radicals.	Step 2: Rewrite as many of the factors as you can as square terms.	Step I: Factor the term that is inside of your radical,	2.	fold al dotted Use a of glud under the to insert book i math noteb Flip up flap an your e direct your r noteb page.	

Cut along the bold lines and fold along the dotted lines. Use a little bit

of glue

notebook. Flip up each flap and write your examples directly onto your math notebook

underneath the top flap to insert the flap book into your

1.

2.

3.

Solving	a Quadrat	ic Equatio	n by Com	pleting the	e Square	Dire 1.	ections: Cut along the bold lines and
Step 6: Check your solutions.	Step 5: Take the square root of both sides in order to cancel out the square term. (This breaks the equation into two separate parts.)	Step 4: Add the number from step 3 to both sides of the equation.	Step 3: Find the number that will complete the square for the x^2 and x terms.	Step 2: Make sure that the coefficient on your x^2 term is a l.	Step I: Move the number term to one side of the equation and keep your x^2 and x terms on the other.	2.	fold along the dotted lines. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook. Flip up each flap and write your examples directly onto your math notebook page.

Directions:	
-------------	--

- Cut along the bold lines and fold along the dotted lines.
- When you fold along the dotted line you will have a mini-book.
- Flip up each flap and write your definitions and examples in the inside pages.
- 4. Insert your finished book into your math notebook.

Step 6: Check your solutions.	Step 5: Split your equation in two. Solve both.	Step 4: Simplify the numerator. Simplify the denominator.	Step 3: Substitute your a, b, and c values in the Quadratic Formula.	Step 2: Locate your a, b, and c values.	Step I: Rewrite your equation in standard form.	Solving a Quadratic Equation using the Quadratic Formula

INB SAMPLES

Thank you for your purchase!

Please be sure to <u>visit our store</u> for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

COPYRIGHT INFORMATION

©2015 Apples and Bananas

All content included in this product is the property of Apples and Bananas or its content suppliers and is protected by international copyright laws and the Digital Millennium Copyright Act (DMCA). Permission is granted for personal or classroom use only. Additional licenses may be purchased. Material may not be reproduced or published on the Internet in any form.