Introduction to Variables, Terms, and Expressions

Interactive Math Notebook Activities and Scaffolded Notes

- What is a Variable?
- What is an Expression?
- What is an Exponent?
- Exponents: the Short Way vs. the Long Way
- Exponents: Do Parentheses Make a Difference?
- What is an Equivalent Expression?
- Terms and Coefficients
- Multiplying Terms
- Simplifying Expressions Taken to a Power
- Like Terms and Unlike Terms
- Match the Like Terms
- Combining Like Terms (Match)
- Combining Like Terms (Expressions with only one type of term) Combining Like Terms (Expressions with more than one type of term)
- What is the Distributive Property?
- Distributive Property (Match)
- How do you evaluate an expression?
- What is the difference between $5 b$ and b^{5} ?
- What is the difference between $2 a b^{3}$ and $2(a b)^{3}$ and $(2 a b)^{3}$?
- Evaluating Expressions Practice

Scaffolded Notes

Write an example of an expression with one variable.

Write an example of an expression with two variables.

Substitute the values from the table into your expression with one variable.

-3	
0	
5	

Substitute the values from the table into your expression with two variables.

-3	1	
0	2	
5	-4	

What is an expression?

Numbers, symbols, and operations that are grouped together to represent a pattern

Write an example of an expression with one variable.

$$
2 x+1
$$

Write an example of an expression with two variables.

$$
2 a+3 b-1
$$

Substitute the values from the table into your expression with one variable.

x	$2 x+1$
-3	$2(-3)+1=-5$
0	$2(0)+1=1$
5	$2(5)+1=11$

Substitute the values from the table into your expression with two variables.

a	b	$2 a+3 b-1$
-3	1	$2(-3)+3(1)-1=-4$
0	2	$2(0)+3(2)-1=5$
5	-4	$2(5)+3(-4)-1=-3$

What is an exponent?

What does the base tell you?

What does the exponent tell you?

Exponential Form
Exponential Form

Factored Form

Multiplied Form

Use exponents to shorten an expression with multiplication in one variable.		Write out an expression with multiplication in one variable the long way.	
Use exponents to shorten an expression with multiplication of two variables in parentheses.		Write out an expression with multiplication of two variables in parentheses the long way.	
Use exponents to shorten an expression with multiplication of a variable and a number in parentheses.	Write out an expression with multiplication of a variable and a number in parentheses the long way.		
Use exponents to shorten an expression with multiplication of the sum of a variable and a number in parentheses.	Write out an expression with multiplication of the sum of a variable and a number in parentheses the long way.		
Use exponents to shorten an expression with multiplication of a mix of variables.	Write out an expression with multiplication of a mix of variables the long way.		
Use exponents to shorten an expression with multiplication of a mix of numbers and variables.		Write out an expression with multiplication of a mix of numbers and variables the long way.	

What is an exponent? A number that tells you how many times a number or expression is supposed to be multiplied by itself.
What does the base tell you? The number that is going to be multiplied over and over again. What does the exponent tell you?
The exponent tells you how many times you multiply the base by itself.

Exponential Form 4^{2}

Exponential Form

7^{3}

Factored Form

7•7•7

Multiplied Form
343

Write out the expression $3 a^{4}$ the long way.

Write out the expression $(3 a)^{4}$ the long way.

Is there a difference between the first and second expression? Explain.

Give another example of the difference between a term with an exponent attached to parentheses and an exponent that does not have parentheses.

What is a term?
Give an example.

What is a coefficient? Give an example.

Write out the expression $3 a^{4}$ the long way.

3aaaa

Write out the expression
$(3 a)^{4}$ the long way.
$(3 a)(3 a)(3 a)(3 a)$

Is there a difference between the first and second expression? Explain. Because of the parentheses, the second expression also takes 3 to the $4^{\text {th }}$ power.

Give another example of the difference between a term with an exponent attached to parentheses and an exponent that does not have parentheses.

$$
\begin{aligned}
& 4 v^{2} \text { vs. }(4 v)^{2} \\
& 4 v v \neq 16 v v
\end{aligned}
$$

What is an equivalent expression?
An expression that has the same value as the equation you are working with

Example

$2(x+4)$ and $2 x+8$ are equivalent expressions

What is a term? Give an example.
A number, a variable, a product of a number and variables, or a quotient of a number and variables

$$
6 x y^{2}, 3 c, x,-8 m
$$

What is a coefficient? Give an example.

The number in your term

Multiplying Terms

Example I Write out the problem.	Example 2 Write out the problem.	Example 3 Write out the problem.	Example 4 Write out the problem.
Step I: Multiply the number terms together.	Step I: Multiply the number terms together.	Step I: Multiply the number terms together.	Step I: Multiply the number terms together.
Step 2: Multiply the variable parts			
together.	Step 2: Multiply the variable parts together.	Step 2: Multiply the variable parts together.	Step 2: Multiply the variable parts together.
Answer			

Simplifying Expressions Taken to a Power

Example I Write out the problem.	Example 2 Write out the problem.	Example 3 Write out the problem.	Example 4 Write out the problem.
Write out the problem the long way.			
Step I: Multiply the number terms together.			
Step 2: Multiply the variable parts together.			
Answer	Answer	Answer	Answer

Multiplying Terms

Example I
Write out the problem.
$(2 m n)(3 n)$
Step I: Multiply the number terms together.
$(2 \cdot 3)(\mathrm{mnm})$
(6) (mnm)

Example 2
Write out the problem.
(6t)(2st)
Step I: Multiply the number terms together.
(6-2)(tst)
(12)(tst)

Example 3
Write out the problem.
$(-2 j)(4 j)$
Step I: Multiply the number terms together.
$(-2 \cdot 4)(j j)$
$(-8)(j j)$

Example 4
Write out the problem.
$(7 u v)\left(2 u^{2} v\right)$
Step I: Multiply the number terms together.
$(7 \cdot 2)\left(u v u^{2} v\right)$
(14) $\left(u v u^{2} v\right)$

Step 2: Multiply the variable parts together.
6(mnm)
$6\left(m^{2} n\right)$

Step 2: Multiply the variable parts together.
12(tst)
$12\left(t^{2} s\right)$
|
Answer

Answer
$12 t^{2} s$

Example 2 Write out the problem. $(6 t)(2 s t)$	Example 3 Write out the problem. $(-2 j)(4 j)$	Example 4 Write out the problem. $(7 u v)\left(2 u^{2} v\right)$
Step I: Multiply the number terms together. $\begin{gathered} (6 \cdot 2)(t s t) \\ (12)(t s t) \end{gathered}$	Step I: Multiply the number terms together. $\begin{gathered} (-2 \cdot 4)(j j) \\ (-8)(j j) \end{gathered}$	Step I: Multiply the number terms together. $\begin{gathered} (7 \cdot 2)\left(u v u^{2} v\right) \\ (14)\left(u v u^{2} v\right) \end{gathered}$
Step 2: Multiply the variable parts together. $\begin{aligned} & 12(t s t) \\ & 12\left(t^{2} s\right) \end{aligned}$	Step 2: Multiply the variable parts together. $\begin{aligned} & -8(j j) \\ & -8\left(j^{2}\right) \end{aligned}$	Step 2: Multiply the variable parts together. $\begin{gathered} 14\left(u v u^{2} v\right) \\ 14\left(u^{3} v^{2}\right) \end{gathered}$
Answer $12 t^{2} s$	Answer $-8 j^{2}$	Answer $14 u^{3} v^{2}$

*Apples and Bananasi

Simplifying Expressions Taken to a Power

Example I Write out the problem. $(2 x y)^{3}$	Example 2 Write out the problem. $\left(2 a^{2} b\right)^{2}$	Example 3 Write out the problem. $(3 b)^{4}$	Example 4 Write out the problem. $(4 v)^{5}$
Write out the problem the long way. $(2 x y)(2 x y)(2 x y)$	Write out the problem the long way. $\left(2 a^{2} b\right)\left(2 a^{2} b\right)$	Write out the problem the long way. $(3 b)(3 b)(3 b)(3 b)$	Write out the problem the long way. $(4 v)(4 v)(4 v)(4 v)(4 v)$
Step I: Multiply the number terms together. $\begin{gathered} (2 \cdot 2 \cdot 2)(x y)(x y)(x y) \\ (8)(x y)(x y)(x y) \end{gathered}$	Step I: Multiply the number terms together. $\begin{gathered} (2 \cdot 2)\left(a^{2} b\right)\left(a^{2} b\right) \\ (4)\left(a^{2} b\right)\left(a^{2} b\right) \end{gathered}$	Step I: Multiply the number terms together. $\begin{gathered} (3 \cdot 3 \cdot 3 \cdot 3)(b)(b)(b)(b) \\ (81)(b)(b)(b)(b) \end{gathered}$	Step I: Multiply the number terms together. $\begin{gathered} (4 \cdot 4 \cdot 4 \cdot 4 \cdot 4)(v)(v)(v)(v)(v) \\ (1024)(v)(v)(v)(v)(\mathrm{v}) \end{gathered}$
Step 2: Multiply the variable parts together. $\begin{gathered} 8(x x x)(y y y) \\ 8 x^{3} y^{3} \end{gathered}$	Step 2: Multiply the variable parts together. $\begin{gathered} 4\left(a^{2} a^{2}\right)(b b) \\ 4 a^{4} b^{2} \end{gathered}$	Step 2: Multiply the variable parts together. $\begin{gathered} 81(b)(b)(b)(b) \\ 8 I b^{4} \end{gathered}$	Step 2: Multiply the variable parts together. $\begin{gathered} 1,024(v)(v)(v)(v)(v) \\ 1,024 v^{5} \end{gathered}$
Answer $8 x^{3} y^{3}$	Answer $4 a^{4} b^{2}$	Answer $8 \mathrm{I} b^{4}$	Answer $1,024 v^{5}$

Terms that have variable parts that match are like terms. ($8 a b,-7 b a$, and $2 a b$ are like terms) Terms with variable parts that are not the same are unlike terms. ($\Psi b, 3 b^{2}$, and, $-\Psi a$ are not like terms)

TMubumbunce

Match the Like Terms

Draw lines to connect like terms.

$2 a a$	$5 a b^{2}$
$7 x^{2}$	$9 c$
$17 m n$	$5 a^{2}$
9	$x y$
$-6 g^{3} h$	$9 m n$
$17 j k k$	$5 j k^{2}$
$2 a b b$	$6 x x$
$3 x y$	-8
$7 c$	$7 g g g h$
$9 c^{2}$	$c c$
$8 u u u$	$9 k j$
$17 j k$	$7 u^{3}$

Combining Like Terms

Draw lines to connect equivalent expressions.

$$
10 x y+7 x y \quad 9 a+11 a
$$

$$
9 x^{4}+\left(-5 x^{4}\right) \quad 2 b c+(-3 b c)
$$

$20 a$
$8 y^{2} z+-7 y^{2} z \quad 2 b+(-9 b)$
$-7 b$
$-9 x+7 x$
$-5 x y z+11 x y z$ $4 y^{3} z^{4}$

$$
-4 y^{3} z^{4}+8 y^{3} z^{4}
$$

$$
6 x y z
$$

$$
-b c \quad 4 x^{4}
$$

Terms that have variable parts that match are like terms. ($8 a b,-7 b a$, and $2 a b$ are like terms) Terms with variable parts that are not the same are unlike terms. ($4 b, 3 b^{2}$, and, - $4 a$ are not like terms)

"Apples and Banancise"

Match the Like Terms
Draw lines to connect like terms.

Combining Like Terms
Draw lines to connect equivalent expressions.

Example I	Example 2 Gombining LiKe Terms With Positive Goefficients	Example 2
Example I	Combining Like Terms with Negative Goefficients	Example 2 a Positive Goefficient and a Negative Goefficient

Example

Example

Combining Like Terms with Positive Coefficients and more than type of term

Combining Like Terms with Negative Coefficients and more than type of term

Combining Like Terms with a Positive Coefficient and a Ne.gative Coefficient and more than one type of term

Example I $2 a+3 a$ $5 a$	Combining Like Terms with Positive Coefficients	Example 2 $7 b c+b c$ $8 b c$
Example I $\begin{gathered} (-9 j)+(-7 j) \\ -16 j \end{gathered}$	Combining Like Terms with Negative Goefficients	Example 2 $\begin{gathered} (-2 m n)+(-5 m n) \\ -7 m n \end{gathered}$
$\begin{gathered} \text { Example I } \\ 4 x+(-2 x) \\ 2 x \end{gathered}$	Combining Like Terms with a Positive Coefficient and a Negative Coefficient	$\begin{gathered} \text { Example } 2 \\ 4 r s+(-8 r s) \\ -4 r s \end{gathered}$
$\begin{gathered} \text { Example I } \\ (-9 v)+7 v \\ -2 v \end{gathered}$	Combining Like Terms with a Negative Coefficient and a Positive Coefficient	Example 2 $(-d)+8 d$ 7d

*Apples and Bananassis)

Example

$$
\begin{gathered}
2 x+3 x y+4 x+3+5 x y \\
(2 x+4 x)+(3 x y+5 x y)+3 \\
6 x+8 x y+3
\end{gathered}
$$

Combining Like Terms with Positive Goefficients and more than type of term

> Example
> $(-2 x)+(-3 x y)+(-4 x)+(-3)+(-5 x y)$
> $(-2 x+(-4 x))+(-3 x y+(-5 x y))+(-3)$ $-6 x+(-8 x y)+(-3)$

Combining Like Terms with Negative Coefficients and more than type of term

$$
\begin{gathered}
\text { Example } \\
2 x+(-3 x y)+(-4 x)+(-3)+5 x y \\
(2 x+(-4 x))+(-3 x y+5 x y)+(-3) \\
-2 x+2 x y+(-3)
\end{gathered}
$$

Combining Like Terms with a Positive Coefficient and a Negative Coefficient and more than one type of term

What is the distributive property?

When do you need to use
Example the distributive property?

Distributive Property Draw lines to connect equivalent expressions.

$2(x+6)$	$5 x+35$
$12(x-2)$	$3 x-3$
$5(x+7)$	$2 x-5$
$6(2 x+3)$	$12 x+18$
$3(x-1)$	$15 x+10$
$-7(x-2)$	$9 x+27$
$-2(-x+5)$	$12 x-24$
$5(3 x+2)$	$-7 x+14$
$9(x+3)$	$2 x+12$

What is the distributive property?
To multiply a sum by a number, multiply each addend of the sum by the number outside the parentheses. For any numbers a, b, and $\mathrm{c}, \mathrm{a}(\mathrm{b}+$ c) $=a b+a c$ and $a(b-c)=a b-a c$.

When do you need to use the distributive property?

When you cannot simplify the addition or subtraction inside of the parentheses because you have a variable in the parentheses.

Example

$$
\begin{gathered}
2(a+5) \\
(2 \cdot a)+(2 \cdot 5) \\
2 a+10 \\
\text { or } \\
2(a-5) \\
(2 \cdot a)-(2 \cdot 5) \\
2 a-10
\end{gathered}
$$

Distríbutive Property

 Draw lines to connect equivalent expressions.

What does it mean to

 evaluate an expression? When you evaluate an expression, you are substituting values in for your variables and simplifying.Example
$a=10, b=2$ and $c=5$
$a+b+c$
$10+2+5$

What is the difference between $5 b$ and b^{5} ?

What is the difference between $2 a b^{3}$ and $2(a b)^{3}$ and $(2 a b)^{3}$?
$2 a b^{3}$

$$
2(a b)^{3}
$$

$(2 a b)^{3}$

Evaluating Expressions Practice
Find the value of each expression when $a=10, b=2$ and $c=5$.

$a+b+c$	$a(b+c)$	$(a+b)(b+c)$
$-a-b-c$	$a(b-c)$	$(a-b)(b-c)$

What is the difference between $5 b$ and b^{5} ?

$$
\begin{gathered}
5 b \\
b+b+b+b+b
\end{gathered}
$$

$$
\begin{gathered}
b^{5} \\
b \cdot b \cdot b \cdot b \cdot b
\end{gathered}
$$

What is the difference between $2 a b^{3}$ and $2(a b)^{3}$ and $(2 a b)^{3}$?

$2 a b^{3}$	$2(a b)^{3}$	$(2 a b)^{3}$
$2 \cdot a \cdot b \cdot b \cdot b$	$2(a b)(a b)(a b)$	$(2 a b)(2 a b)(2 a b)$

Evaluating Expressions Practice
Find the value of each expression when $a=10, b=2$ and $c=5$.

$a+b+c$	$a(b+c)$	$(a+b)(b+c)$
$10+2+5$	$10(2+5)$	$(10+2)(2+5)$
17	$10(7)$	$(12)(7)$
	70	(84)
		$(a-b)(b-c)$
		$(10-2)(2-5)$
$-(10)-(2)-(5)$	$10(2-5)$	$(8)(-3)$
-17	$10(-3)$	(-24)

Interactive Math Notebook Review Activities

Math Words: Variable and Expression

Variable

Define and give an example.

Expression
 Define and give an example.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap and write your definitions and examples in the inside pages.
4. Insert your finished book into your math notebook.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a triangle flap book.
3. Flip up each flap and write your examples in the inside pages.
4. Insert your finished book into your math notebook.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap
 and write your definitions and examples in the inside pages.
4. Insert your finished book into your math notebook.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. Use a little bit of glue underneath the top flap to insert the flap book into your math notebook.
3. Flip up each flap and write your examples directly onto your math notebook page.

Directions:

1. Cut along the bold lines and fold along the dotted lines.
2. When you fold along the dotted line you will have a mini-book.
3. Flip up each flap and write your definitions and examples in the inside pages.
4. Insert your finished book into your math notebook.
¿Atuadoud
2N!+hq!
2पH S! IDYM

INB SAMPLES

Please be sure to visit our store for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

A special thank you to the following for providing quality borders, fonts, clip art, ete.

COPYRIGHT INFORMATION

©2015 Apples and Bananas

